Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/33/0f/1f/330f1fb1-08c9-dd45-2469-e90c04444ca2/mza_7336556532752700965.jpg/600x600bb.jpg
Kognitive Systeme, SS2017, Vorlesung
Karlsruher Institut für Technologie (KIT)
16 episodes
9 months ago
Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Vorlesungsaufzeichnung: KIT | WEBCAST: http://webcast.kit.edu
Show more...
Courses
Education
RSS
All content for Kognitive Systeme, SS2017, Vorlesung is the property of Karlsruher Institut für Technologie (KIT) and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Vorlesungsaufzeichnung: KIT | WEBCAST: http://webcast.kit.edu
Show more...
Courses
Education
Episodes (16/16)
Kognitive Systeme, SS2017, Vorlesung
16: Kognitive Systeme, Vorlesung, SS 2017, 24.07.2017
16 | 0:00:00 Starten 0:02:06 Überblick 0:02:12 Interaktion in der Merkmalsauswahl 0:06:59 Ausblick Aktivitätserkennung 0:07:53 Prinzip: Programmieren durch Demonstration 0:08:35 Sensoren zur Handlungsbeobachtung 0:09:56 Zyklus- Programmieren durch Vormachen 0:12:17 Constraint Representation 0:13:57 Bewegungsbeispiele 0:15:10 Motions: Automatic model refinement 2 0:15:54 Strategy Learning 0:16:49 Motions: Preminary Model generation 0:18:08 Ansatz zu generativen Lernzyklen 0:23:03 Kognitive Systemarchitektur 0:25:47 Autonomes Lernen von Skills 0:27:17 Lernen von Onthologien und Relationen 0:30:06 Forschungsfelder im Human Brain Project 0:40:36 Vision of Neurorobotics 0:43:37 Why Linking Brains to Robots? 0:50:00 Ansatz: Werkzeuge und Methoden 0:56:11 Technology for Neuronal Robot Controls 1:05:32 Manipulation and grasping: arm motion 1:13:05 Future development of the NRP
Show more...
8 years ago
1 hour 15 minutes 18 seconds

Kognitive Systeme, SS2017, Vorlesung
15: Kognitive Systeme, Vorlesung, SS 2017, 17.07.2017
15 | 0:00:00 Starten 0:00:10 Robotik 0:01:22 Überblick 0:01:57 Greifen von Alltagsobjekten 0:04:25 Planung von Greifoperationen 0:04:52 Griffklassen 0:06:47 Cutkosky-Griffhierarchie 0:08:01 Bewegungstypen 0:12:36 Griffgenerierung: Planungsschritte 0:14:00 Griffgenerierung: Nebenbedingungen 0:18:10 Wie generiert man ""gute"" Griffe? 0:19:44 Ausweg: Griffe im Greifsimulator generieren 0:21:37 Heuristiken für Griffkandidatenerzeugung I 0:22:35 Heuristiken für Griffkandidatenerzeugung II 0:23:02 Heuristiken für Griffkandidatenerzeugung III 0:23:56 Heuristiken für Griffkandidatenerzeugung IV 0:25:02 Greifplanung im Simulator 0:25:43 Gütemaß für Stabilität: Kraftschluss 0:26:55 Interaktive Exploration und Lernen 0:29:59 Motivation für Lernen aus Beobachtung 0:33:33 Lösungskonzept zur Handlungsbeobachtung 0:35:51 Eigenschaften der Handlungserkennung 0:36:45 Durchführung der Erkennung 0:39:19 Beispielszenen 0:39:32 Modellierung von Bewegungsmerkmalen 0:40:35 Verfahren zur Merkmalsexploration 0:41:36 Merkmalsauswahl 0:42:19 Schema der Merkmalsauswahl 0:43:02 Interaktion in der Merkmalsauswahl 0:44:48 Ergebnisse Merkmalsexploration 0:46:20 Ergebnisse Merkmalsauswahl 0:47:18 Ergebnisse Klassifikation 0:48:32 Ausblick Aktivitätserkennung 0:51:49 Prinzip: Programmieren durch Demonstration 0:52:58 Natürliches Programmieren durch Vormachen 0:53:52 Sensoren zur Handlungsbeobachtung 0:55:22 Zyklus - Programmieren durch Vormachen 0:57:37 Constraint Representation 1:00:50 Planungsmodell 1:02:54 Lernen von Suchheuristiken 1:05:08 Bewegungsbeispiele 1:06:12 Motions: Automatic model refinement II 1:09:13 Strategy Learning 1:10:24 Motions: Manipulation strategies 1:10:27 Motions: Programming method 1:10:50 Motions: Preliminary Model generation 1:11:21 Motions: Correspondence Problem 1:12:06 Generativer Lernzyklus 1:17:26 Kognitive Systemarchitektur 1:18:52 Struktural Bootstrapping von OACs 1:20:08 Autonomes Lernen von Skills 1:20:47 Lernen von Onthologien und Relationen Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.
Show more...
8 years ago
1 hour 24 minutes 37 seconds

Kognitive Systeme, SS2017, Vorlesung
14: Kognitive Systeme, Vorlesung, SS 2017, 12.07.2017
14 | 0:00:00 Starten 0:01:34 Überblick 0:02:36 Einführung 0:14:57 Beispiel: Roboter ""ARMAR-|||"" 0:16:36 Gelenktypen 0:18:31 Arbeitsraum 0:24:25 Beispiele für Arbeitsräume 0:25:41 Paralleler Roboter 0:28:11 Kommerzielle Robotertypen 0:29:06 Mobile Systeme, Lokomotion 0:29:33 Radkonfigurationen 0:31:30 Mecanum-Antrieb 0:32:51 Aktuatoren 0:33:24 Fluidscher Antrieb 0:33:58 Muskelartiger Antrieb 0:35:41 Elktrischer Antrieb 0:35:57 Funktionsweise Elektromotor 0:37:12 Sensoren 0:41:49 Robotermodellierung 0:43:31 Geometrische Modellierung 0:44:23 Geometrisches Modell 0:45:45 Kinematisches Modell 0:50:46 Kinematisches Modell 0:52:51 Dynamisches Model
Show more...
8 years ago
1 hour 18 minutes 14 seconds

Kognitive Systeme, SS2017, Vorlesung
13: Kognitive Systeme, Vorlesung, SS 2017, 10.07.2017
13 | 0:00:00 Starten 0:00:10 Wissen und Planung II 0:01:30 Kurze Wiederholung 0:03:11 Repräsentation von Plänen 0:04:31 STRIPS 0:13:19 ADL 0:16:56 Planungsstrategien 0:24:10 A* - Suche 0:27:55 Partial-Order-Planning 0:38:28 Planungsgraphen 0:43:52 Umweltmodell 0:50:47 Objektmodellierung 0:52:41 Kantenmodelle 0:54:17 Oberflächenmodelle 0:55:07 Volumenmodelle 0:56:43 Begrenzungsflächen 0:57:11 Constructive Solid Geometry (CSG) 0:58:44 Umgebungskarten 1:02:03 Dimensionalität 1:03:29 Repräsentation von Hindernisse, Bahnplanungsmethoden 1:03:40 Übersicht 1:08:19 Freiraum und Hindernisraum 1:10:45 Konfigurationsraum 1:11:28 Polygonzerlegung 1:14:21 Sichtgraphen 1:16:10 Gitter 1:19:16 Quadtrees 1:22:32 Voronoi-Diagramme 1:24:01 Potentialfeldmethode Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.
Show more...
8 years ago
1 hour 28 minutes 22 seconds

Kognitive Systeme, SS2017, Vorlesung
12: Kognitive Systeme, Vorlesung, SS 2017, 05.07.2017
12 | 0:00:00 Starten 0:00:12 Wissen und Planung I 0:02:40 Gesichtserkennung 0:05:48 Historischer Überblick 0:08:23 Gesichtserkennung vs. Objekterkennung 0:14:59 Merkmalsbasierte Gesichtserkennung 0:19:46 Klassifikation 0:21:04 Überblick 0:33:07 Einführung 0:49:03 Wissensrepräsentation: Grundlagen 0:54:38 Wissensrepräsentation: Logik 1:02:03 Aussagenlogik 1:06:10 Logik: Resolutionsalgorithmus 1:07:23 Logik: Horn-Klauseln 1:08:53 Logik: DPLL 1:09:52 Prädikatenlogik 1:12:10 Planungssprachen 1:13:29 STRIPS
Show more...
8 years ago
1 hour 20 minutes 56 seconds

Kognitive Systeme, SS2017, Vorlesung
11: Kognitive Systeme, Vorlesung, SS 2017, 03.07.2017
11 | 0:00:00 Starten 0:00:37 3D-Bildverarbeitung 0:01:30 Geometrische 3D-Transformationen 0:10:32 Homogene Koordinaten 0:18:10 Quaternionen 0:31:02 Lochkamera (ideales Modell) 0:31:46 Erweiteres Kameramodell 0:39:46 Kamerakalibrierung 0:42:35 Direkte Lineare Transformation 0:43:37 Stereokonstruktion 0:47:57 Epipolargeometrie 0:53:21 Fundamentalmatrix 0:54:39 Stereo-Sehen 0:57:56 Human Motion Capture: Erfassung von Bewegungen und Handlungen des Menschen 1:02:16 Menschmodell 1:05:40 Bewegungs- und Handlungserfassung 1:08:57 Action representation 1:10:51 Perception 1:12:09 Human MMM 1:15:28 HMC mit Partikel Filter 1:22:33 HMC mit ICP 1:25:06 Gesichtserkennung
Show more...
8 years ago
1 hour 25 minutes 52 seconds

Kognitive Systeme, SS2017, Vorlesung
10: Kognitive Systeme, Vorlesung, SS 2017, 26.06.2017
10 | 0:00:00 Starten 0:02:02 Maschinensehen 0:06:33 Sensorische Erfassung: Szene 0:07:37 Sensorische Erfassung: Situation 0:10:26 Zustandsprädikation auf Basis von Beobachtungen 0:12:29 Visual Sensing Problems 0:14:43 HDR: Image Capturing 0:16:21 Visual Feature Extraction 0:19:37 Inhalt der heutigen Vorlesung 0:27:24 Schwellwertoperationen 0:29:36 Multilevel Otsu Verfahren 0:38:26 Morphologische Operatoren 0:44:05 Opening 0:45:12 Segmentieung: Bewegung 0:47:27 Segmentierung: Region Growing 0:54:33 Segmentierung: Kanten 1:11:12 Einfache Deskriptoren 1:13:09 Kombinierte Ansätze 1:14:25 2D-Transformationen: Translation 1:15:09 Homogene Koordinaten 1:15:30 Homogene 2D-Transformationen
Show more...
8 years ago
1 hour 17 minutes 53 seconds

Kognitive Systeme, SS2017, Vorlesung
08: Kognitive Systeme, Vorlesung, SS 2017, 14.06.2017
08 | 0:00:00 Starten 0:00:10 Speech 0:00:49 Die Fundamentalformel der Spracherkennung 0:13:27 Speech Recognition (Components) 0:14:51 Hidden Markov Models 0:22:04 Acoustic Modeling 0:25:17 HMM Problems and Solutions
Show more...
8 years ago
27 minutes 16 seconds

Kognitive Systeme, SS2017, Vorlesung
09: Kognitive Systeme, Vorlesung, SS 2017, 19.06.2017
09 | 0:00:00 Starten 0:00:10 HMM Problems And Solutions 0:02:34 HMMs In Speech Recognition 0:04:42 Model Topologies 0:05:49 Forward-Backward Training for Continuous Speech 0:06:26 Discrete HHM's Vector Quantization 0:08:37 Acoustic Modeling 0:12:38 Neural Net Approaches to Pattern Classification 0:12:47 Simple NN Vowel Classification 0:13:20 HMM-DeepNN Hybrids 0:14:24 Deep Neural Net Hybrids 0:18:59 Time-Delay Neural Network (TDNN) 0:26:51 Reverberation Robust Speech Reco 0:27:08 TDNN / CNN - Waibel 1987 0:28:53 Conversational Speech 0:29:17 Convolutional Nets 0:29:46 Convolutional Nets in Image Classification 0:30:43 Mastering the Game of Go 0:32:04 Speech Recognition (System Components) 0:32:50 Dictionaries 0:39:06 Language Models: Grammar Based 0:40:39 Speech Recognition 0:42:16 A Word Guessing Game 0:43:00 Bigrams and Trigrams 0:44:54 The Bag of Words Experiment 0:45:10 Language Models: N-Grams 0:46:56 Objective Estimation of Language Model Quality 0:55:21 The Perplexity of a Language Model 0:59:36 Recurrent Neural Nets 1:00:25 Elman Networks - Simple RNN 1:01:05 Jordan Networks - Simple RNN 1:01:43 Backpropagation Through Time 1:02:11 Modeling Sequences with RNN 1:02:54 Measuring Recognizer Performance 1:04:37 Factors Affecting Recognizer Performance 1:04:49 How Good Does it Have to be? 1:06:35 Voice Agents 1:11:17 Natural Language Processing 1:12:11 Machine Translation: Approaches 1:15:17 Statistical Machine Translation 1:18:47 RNN Encoder - Decoder 1:19:42 Neural Machine Translation 1:20:37 RNN Encoder-Decoder Architecture 1:21:05 Attention Mechanism in the Recurrent Decoder 1:21:28 BiRNN Encoder-Decoder with Attention Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Lehrinhalt: Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft.
Show more...
8 years ago
1 hour 24 minutes 30 seconds

Kognitive Systeme, SS2017, Vorlesung
07: Kognitive Systeme, Vorlesung, SS 2017, 31.05.2017
07 | 0:00:00 Starten 0:00:10 Lecture Demos 0:00:42 Spectogram Controls 0:09:49 Speech: State-of-the-Art 0:14:09 Sloppy Speech 0:16:47 Speech Recognition (System Overview) 0:20:21 Voiced and Unvoiced Phonemes 0:21:35 Analog to Digital 0:21:50 Front End Processing 0:23:49 Linear Sequence Alignment 0:25:15 Problem with Linear Alignment 0:28:08 Speech Recognition (Components) 0:30:50 Spectogram 0:32:04 Markov Models 0:36:18 Single Fair Coin 0:37:23 Discrete Observation HMM 0:40:54 Hidden Markov Models 0:45:25 Acoustic Modeling 0:48:13 HMM Problems and Solutions 0:51:35 Evaluation 0:54:08 The Forward Algorithm 0:58:58 Forward Trellis 1:04:39 The Backward Algorithm 1:05:00 Decoding 1:08:35 Viterbi Trellis
Show more...
8 years ago
1 hour 9 minutes 10 seconds

Kognitive Systeme, SS2017, Vorlesung
06: Kognitive Systeme, Vorlesung, SS 2017, 29.05.2017
06 | 0:00:00 Starten 0:00:22 Neural Networks 0:00:29 The brain is: 0:03:19 Von Neumann Computer - Neural Computation 0:14:34 Coding of Speach: ""Bottleneck Features"" 0:15:34 Using Neural Nets 0:16:56 Neural Models 0:17:30 Apllications 0:19:15 Advanced Neural Models 0:19:29 Time Varying Patterns 0:24:02 Classical Human - Computer Interaction 0:25:16 Better Human-Machine Interaction 0:26:29 Interpreting Human Communication 0:27:46 Humans and Computers 0:29:38 Speech 0:30:05 A Few Related Sciences 0:33:01 Anatomy of Speech Production 0:37:17 Speech Production 0:45:04 Convolution 0:45:32 Trandfer Functions of the Diffrent Components of Speech Production 0:50:36 Diffrent Vocal Tract Shapes 0:52:39 Formants 0:57:43 Spektogramme 1:04:00 Vokale im Zeitbereich 1:05:11 Consonants 1:07:01 Vocal Tract Shapes of Consonants Fricatives 1:07:48 Vocal Tract Model of Speech 1:12:31 Dimensions of Difficulty 1:19:38 Speech: State-of-the Art
Show more...
8 years ago
1 hour 21 minutes 53 seconds

Kognitive Systeme, SS2017, Vorlesung
05: Kognitive Systeme, Vorlesung, SS 2017, 24.05.2017
05 | 0:00:00 Starten 0:00:06 Decision Function g(x) 0:03:26 Perceptron - Nonlinearities 0:04:11 The Perceptron 0:05:44 Linear Discriminant Functions 0:06:56 Perceptron 0:08:36 Perceptron Criterion Function 0:15:43 Linearly Separable Samples and the Solution Region in Weight Space 0:20:04 Finding a Solution Region by Gradient Search 0:24:40 Perceptron Learning 0:34:10 Variations 0:35:07 Effect of the Margin on the Solution Region 0:35:35 Nonseparable behavior 0:42:32 Network of Neurons/ Multi-Layer Perceptron 0:45:21 Connectionist Units 0:48:53 Training the MLP by Error Back-Propagation 0:53:23 Backpropagation of Error 0:56:19 Derivative dy/dx 1:05:41 Neural Network Demo
Show more...
8 years ago
1 hour 22 minutes 31 seconds

Kognitive Systeme, SS2017, Vorlesung
04: Kognitive Systeme, Vorlesung, SS 2017, 22.05.2017
04 | 0:00:00 Starten 0:05:02 Non-Parametric Techniques: Parzen Windows 0:10:45 K-Nearest Neighbors (KNN) 0:19:28 KNN-Classifier: Problem 0:20:50 Decision Function g(x) 0:24:35 Linear Discriminant Functions 0:35:49 Unsupervised Learning 0:38:42 Unsupervised Classification 0:58:31 Clustering 1:19:18 Linear Discriminant Functions 1:21:08 Perceptron Criterion Function
Show more...
8 years ago
1 hour 25 minutes 7 seconds

Kognitive Systeme, SS2017, Vorlesung
03: Kognitive Systeme, Vorlesung, SS 2017, 17.05.2017
03 | 0:00:00 Starten 0:00:11 Classification Problem 0:07:56 Bayes Decision Theory 0:20:49 Classifier Design in Practice 0:24:59 GaussianClassifier 0:51:12 Principal Component Analysis (PCA) 1:07:28 Minimum Error Rate Classification 1:11:38 Non-Parametric Techniques: Parzen Windows
Show more...
8 years ago
1 hour 16 minutes 1 second

Kognitive Systeme, SS2017, Vorlesung
02: Kognitive Systeme, Vorlesung, SS 2017, 15.05.2017
02 | 0:00:00 Starten 0:01:23 Abtasten 0:01:52 Digitalisierung von Signalen 0:02:17 Quantisierung 0:02:31 Faltung 0:03:04 Idee der Fourier Transformation und Fourier-Reihen 0:03:41 Fourier Reihenzerlegung 0:04:54 Fourierreihen für Rechteckfunktion 0:05:18 Fouriertransformation 0:08:01 Eigenschaften von Fouriertransformierten 0:10:53 Faltung 0:18:49 Zusammenhänge 0:21:45 Typische Fouriertransformationen 1 0:25:11 Fourier Reihen und Transformationen 0:32:38 Typische Fouriertransformationen 2 0:35:15 Von kontinuierlich nach diskret 0:37:59 Aliasing 0:41:17 Abtast/Sampling Theorem 0:42:23 Abtasten in der Praxis 0:43:11 Beheben von Aliasing 0:45:06 Korrelation 0:50:41 Schablonenanpassung (Template Matching) 0:56:00 Klassifikation 1+2 1:09:45 Classification Problem 1:14:42 Bayes Decision Theory 1:19:37 Two classes case: 1:20:54 Hypothetical class-conditional probability density function 1:21:22 A posteriori probabilities 1:22:13 Examples Decision boundraries
Show more...
8 years ago
1 hour 25 minutes 6 seconds

Kognitive Systeme, SS2017, Vorlesung
01: Kognitive Systeme, Vorlesung, SS 2017, 10.05.2017
01 | 0:00:00 Starten 0:00:10 Digitalisierung von Signalen 0:03:34 Abtasten / Sampling und Rekonstruktion 0:04:26 Sampling - Aliasing 0:05:55 Beheben von Aliasing 0:11:10 Quantisierung 0:15:58 Quantisierung - Bilder 0:17:28 Diracfunktion 0:21:25 Faltung 0:30:32 Demo 0:33:51 Convolution Demo 0:43:36 Beispiel Faltung 0:45:19 Idee der Fourier Transformation und Fourier-Reihen 0:55:26 Fourier Reihenzerlegung 1:02:25 Fourier series demo 1:07:14 Fourierreihe 1:08:19 Fouriertransformation
Show more...
8 years ago
1 hour 16 minutes 27 seconds

Kognitive Systeme, SS2017, Vorlesung
Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund einer hinterlegten Wissensbasis gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Repräsentation des Wissens sowie die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren. Weitere Schwerpunkte der Vorlesung sind Lern- und Planungsmethoden und deren Umsetzung. In den Übungen werden die vorgestellten Methoden durch Aufgaben vertieft. Vorlesungsaufzeichnung: KIT | WEBCAST: http://webcast.kit.edu