Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/51/f0/05/51f005d5-b900-956e-6c93-b74d209d08e2/mza_668194490456052707.jpg/600x600bb.jpg
CausalML Weekly
Jeong-Yoon Lee
18 episodes
6 days ago
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.
Show more...
Technology
RSS
All content for CausalML Weekly is the property of Jeong-Yoon Lee and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.
Show more...
Technology
Episodes (18/18)
CausalML Weekly
CausalML Book Ch1: Foundations of Linear Regression and Prediction

This episode explores the foundational concepts of linear regression as a tool for predictive inference and association analysis. It details the Best Linear Prediction (BLP) problem and its finite-sample counterpart, Ordinary Least Squares (OLS), emphasizing their statistical properties, including analysis of variance and the challenges of overfitting when the number of parameters is not small relative to the sample size. The text further introduces sample splitting as a method for robustly evaluating predictive models and clarifies how partialling-out helps in understanding the predictive effects of specific regressors, such as in analyzing wage gaps. Finally, it discusses adaptive statistical inference and the behavior of OLS in high-dimensional settings where traditional assumptions may not hold.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
14 minutes 59 seconds

CausalML Weekly
CausalML Book Ch17: Regression Discontinuity Designs in Causal Inference

This episode explores a powerful method for identifying causal effects in non-experimental settings. The authors, affiliated with various universities, explain the basic RDD framework, where treatment assignment is determined by a running variable crossing a cutoff value. The text highlights how modern machine learning (ML) methods can enhance RDD analysis, particularly when dealing with numerous covariates, improving efficiency and allowing for the study of heterogeneous treatment effects. An empirical example demonstrates the application of RDD and ML techniques to analyze the impact of an antipoverty program in Mexico.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
18 minutes 24 seconds

CausalML Weekly
CausalML Book Ch16: Causal Inference with Difference-in-Differences and DML

This episode introduces and explains the Difference-in-Differences (DiD) framework, a widely used method in social sciences for estimating causal effects in situations with treatment and control groups over multiple time periods. It elaborates on the core assumption of "parallel trends" and discusses how Debiased Machine Learning (DML) methods can be used to incorporate high-dimensional control variables, enhancing the robustness of DiD analysis. The text illustrates these concepts with a practical example applying DML to study the impact of minimum wage changes on teen employment, analyzing different machine learning models and assessing their performance. The authors also briefly touch on more advanced DiD settings, such as those involving repeated cross-sections, and provide exercises for further study.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
15 minutes 11 seconds

CausalML Weekly
CausalML Book Ch15: Causal Machine Learning: CATE Estimation and Validation

This episode focuses on methods for estimating and validating individualized treatment effects, particularly using machine learning (ML) techniques. It explores various "meta-learning" strategies like the S-Learner, T-Learner, Doubly Robust (DR)-Learner, and Residual (R)-Learner, comparing their strengths and weaknesses in different data scenarios. The text also discusses covariate shift and its implications for model performance, proposing adjustments. Finally, it addresses model selection and ensembling for CATE models, along with crucial validation techniques such as heterogeneity tests, calibration checks, and uplift curves to assess model quality and interpret treatment effects.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
28 minutes 11 seconds

CausalML Weekly
CausalML Book Ch14: Statistical Inference on Heterogeneous Treatment Effects

This episode  focuses on Conditional Average Treatment Effects (CATEs), which are crucial for understanding how treatments affect different subgroups. It contrasts CATEs with simpler average treatment effects, highlighting the complexity and importance of personalized policy decisions. The text details least squares methods for learning CATEs, including Best Linear Approximations (BLAs) and Group Average Treatment Effects (GATEs), exemplified by a 401(k) study. Furthermore, it explores non-parametric inference for CATEs using Causal Forests and Doubly Robust Forests, demonstrating their application in the 401(k) example and a "welfare" experiment. The authors provide notebook resources for practical implementation of these statistical methods.keepSave to notecopy_alldocsAdd noteaudio_magic_eraserAudio OverviewflowchartMind Map
Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
19 minutes 43 seconds

CausalML Weekly
CausalML Book Ch13: DML Inference Under Weak Identification

This episode explores advanced econometric methods for causal inference using Double/Debiased Machine Learning (DML). It focuses on applying DML to instrumental variable (IV) models, including partially linear IV models and interactive IV regression models (IRM) for estimating Local Average Treatment Effects (LATE). A significant portion addresses robust DML inference under weak identification, a common challenge where instruments provide limited information about the endogenous variable. The chapter revisits classic examples like the effect of institutions on economic growth and 401(k) participation on financial assets, demonstrating how DML can offer more robust and flexible analyses compared to traditional methods, especially in the presence of weak instruments.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
15 minutes 44 seconds

CausalML Weekly
CausalML Book Ch12: Unobserved Confounders, Instrumental Variables, and Proxy Controls

This episode examines methods for causal inference when unobserved variables, known as confounders, complicate identifying true causal relationships. It begins by discussing sensitivity analysis to assess how robust causal inferences are to such unobserved confounders. The text then introduces instrumental variables (IVs) as a technique to identify causal effects in the presence of these hidden factors, offering both partially linear and non-linear models. Furthermore, the chapter explores the use of proxy controls, which are observed variables that act as stand-ins for unobserved confounders, to enable causal identification, extending these methods to non-linear settings. Throughout, the document highlights practical applications and the role of Double Machine Learning (DML) in these advanced causal inference strategies.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
17 minutes 18 seconds

CausalML Weekly
CausalML Book Ch11: DAGs: Good and Bad Controls for Causal Inference

This episode focuses on causal inference and the selection of control variables within the framework of Directed Acyclic Graphs (DAGs). It explains various strategies for constructing valid adjustment sets to identify average causal effects, such as conditioning on parents or common causes of treatment and outcome variables. The text differentiates between "good" and "bad" controls, emphasizing how conditioning on certain pre-treatment or post-treatment variables can introduce or amplify bias. Through examples like M-bias and collider bias, the authors illustrate scenarios where adjusting for seemingly innocuous variables can lead to incorrect causal conclusions. Ultimately, the excerpt provides guidance on robust methods for causal identification while cautioning against common pitfalls in empirical research.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
25 minutes 3 seconds

CausalML Weekly
CausalML Book Ch10: Feature Engineering for Causal and Predictive Inference

This episode focuses on feature engineering, a technique that transforms complex data like text and images into numerical representations called embeddings for use in predictive and causal applications. It begins by explaining principal component analysis and autoencoders as methods for generating these embeddings. The text then specifically addresses text embeddings, detailing early methods like Word2Vec and later, more sophisticated sequence models such as ELMo and BERT, highlighting their architectural differences and advancements in capturing context. Finally, the chapter covers image embeddings through models like ResNet50 and illustrates their practical application in hedonic price modeling, demonstrating how these engineered features significantly improve prediction accuracy compared to traditional methods.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
20 minutes 32 seconds

CausalML Weekly
CausalML Book Ch9: Statistical Inference in Nonlinear Regression Models

This episode focuses on Double/Debiased Machine Learning (DML) methods for statistical inference on predictive and causal effects in complex regression models. It introduces Neyman orthogonality and cross-fitting as key ingredients to mitigate bias in high-dimensional settings, providing theoretical foundations and practical algorithms for Partially Linear Regression Models (PLM) and Interactive Regression Models (IRM). The text illustrates DML's application through case studies on gun ownership and 401(k) eligibility, showcasing how it provides robust estimates even when conventional methods fail due to unobserved confounding or overfitting. The authors highlight the importance of selecting high-quality machine learning estimators and the benefit of ensemble methods to minimize bias and improve the accuracy of causal inference.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
22 minutes 20 seconds

CausalML Weekly
CausalML Book Ch8: Modern Nonlinear Regression: Trees, Neural Networks, and Prediction Quality

This episode explores modern nonlinear regression methods crucial for predictive inference in causal analysis. It focuses on tree-based techniques like regression trees, random forests, and boosted trees, as well as neural networks and deep learning. The text discusses the theoretical guarantees of these methods, particularly concerning their approximation quality and convergence rates under various sparsity assumptions. Finally, it provides a practical case study using wage data to compare the predictive performance of these algorithms and introduces the concept of ensemble learning and automated machine learning (AutoML) frameworks for combining predictions.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
29 minutes 4 seconds

CausalML Weekly
CausalML Book Ch7: Causal Inference with Directed Acyclic Graphs and SEMs

This episode explores causal inference through the lens of directed acyclic graphs (DAGs) and nonlinear structural equation models (SEMs). It highlights how these models provide a formal, nonparametric framework for understanding causal relationships, moving beyond simpler linear assumptions. The text introduces concepts like counterfactuals and conditional ignorability, explaining how they are derived from SEMs and verified using DAGs. It further details two graphical methods for identifying causal effects: the counterfactual DAG approach and Pearl's backdoor criterion, both aimed at finding adjustment sets to eliminate confounding. Finally, the authors discuss the implications of faithfulness assumptions in causal discovery, emphasizing the practical challenges of inferring causal structures from real-world data.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
17 minutes 7 seconds

CausalML Weekly
CausalML Book Ch6: Causal Inference via Linear Structural Equations

This episode introduces linear structural equation models (SEMs) and causal diagrams, also known as Directed Acyclic Graphs (DAGs). The text explains how these models can be used for causal inference, particularly in economics, using examples like gasoline demand and wage gap analysis. It highlights the importance of conditional exogeneity and the potential pitfalls of "collider bias" when conditioning on certain variables. The authors demonstrate how SEMs can distinguish between causal effects and mere statistical correlations, offering a framework to understand complex phenomena like discrimination.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
16 minutes

CausalML Weekly
CausalML Book Ch5: Causal Inference: Conditional Ignorability and Propensity Scores

This episode focuses on methods for identifying average causal effects in observational studies. It explores the concept of conditional ignorability, explaining how adjusting for observed covariates can help mitigate selection bias, making non-randomized data comparable to randomized control trials. The text further discusses the propensity score as a key tool, detailing its use in reweighting and conditioning to achieve unbiased causal effect estimates. Additionally, it addresses how these techniques can be applied to estimate average treatment effects for specific groups (GATE) and on the treated (ATET), emphasizing practical applications and connections to linear regression models.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
22 minutes 55 seconds

CausalML Weekly
CausalML Book Ch4: High-Dimensional Linear Regression and Causal Effects

This episode focuses on high-dimensional linear regression models, specifically discussing causal effects and inference methods. The core of the text explains the Double Lasso procedure, a technique utilizing Lasso regression twice to estimate predictive effects and construct confidence intervals, emphasizing its reliance on Neyman orthogonality for low bias. The authors illustrate its application through examples like the convergence hypothesis in economics and wage gap analysis, comparing its performance against less robust "naive" methods. Furthermore, the text briefly touches upon other Neyman orthogonal approaches, such as Double Selection and Debiased Lasso, and provides references for more in-depth study and related work.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
18 minutes 58 seconds

CausalML Weekly
CausalML Book Ch3: Predictive Inference with High-Dimensional Linear Regression

This episode focuses on predictive inference using linear regression methods in high-dimensional settings where the number of predictors (p) often exceeds the number of observations (n). The text primarily explores Lasso regression, explaining its mechanism for variable selection and reducing overfitting by penalizing coefficient magnitudes. It also compares Lasso to other penalized regression techniques like Ridge, Elastic Net, and Lava, discussing their suitability for different data structures such as sparse, dense, or sparse+dense coefficient vectors, and emphasizes the importance of cross-validation for selecting optimal tuning parameters.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
37 minutes 43 seconds

CausalML Weekly
CausalML Book Ch2: Causal Inference Through Randomized Experiments

This episode provides a comprehensive overview of causal inference using Randomized Controlled Trials (RCTs), often considered the gold standard in establishing cause-and-effect relationships. The text begins by explaining the potential outcomes framework and the concept of Average Treatment Effects (ATEs), contrasting them with Average Predictive Effects (APEs) and highlighting how random assignment in RCTs eliminates selection bias. It then discusses statistical inference methods for two-sample means, illustrating these concepts with a Pfizer/BioNTech COVID-19 vaccine RCT example. The paper further explores how pre-treatment covariates can be utilized to improve precision in ATE estimation and discover treatment effect heterogeneity, detailing both classical additive and interactive regression approaches and applying them to a Reemployment Bonus RCT. Finally, the authors illustrate RCTs using causal diagrams and address the inherent limitations of RCTs, including externalities, ethical considerations, and generalizability concerns.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
19 minutes 23 seconds

CausalML Weekly
CausalML Book Summary

This podcast, generated by NotebookLM, summarizes the Causal ML book by Victor Chernozhukov, Christian Hansen, Nathan Kallus, Martin Spindler, and Vasilis Syrgkanis.


Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Show more...
4 months ago
12 minutes 57 seconds

CausalML Weekly
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.