Home
Categories
EXPLORE
True Crime
Comedy
Business
Society & Culture
Health & Fitness
Sports
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/51/f0/05/51f005d5-b900-956e-6c93-b74d209d08e2/mza_668194490456052707.jpg/600x600bb.jpg
CausalML Weekly
Jeong-Yoon Lee
18 episodes
5 days ago
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.
Show more...
Technology
RSS
All content for CausalML Weekly is the property of Jeong-Yoon Lee and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/43986683/43986683-1751327354229-cbecb9485460b.jpg
CausalML Book Ch7: Causal Inference with Directed Acyclic Graphs and SEMs
CausalML Weekly
17 minutes 7 seconds
4 months ago
CausalML Book Ch7: Causal Inference with Directed Acyclic Graphs and SEMs

This episode explores causal inference through the lens of directed acyclic graphs (DAGs) and nonlinear structural equation models (SEMs). It highlights how these models provide a formal, nonparametric framework for understanding causal relationships, moving beyond simpler linear assumptions. The text introduces concepts like counterfactuals and conditional ignorability, explaining how they are derived from SEMs and verified using DAGs. It further details two graphical methods for identifying causal effects: the counterfactual DAG approach and Pearl's backdoor criterion, both aimed at finding adjustment sets to eliminate confounding. Finally, the authors discuss the implications of faithfulness assumptions in causal discovery, emphasizing the practical challenges of inferring causal structures from real-world data.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
CausalML Weekly
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.