Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/51/f0/05/51f005d5-b900-956e-6c93-b74d209d08e2/mza_668194490456052707.jpg/600x600bb.jpg
CausalML Weekly
Jeong-Yoon Lee
18 episodes
6 days ago
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.
Show more...
Technology
RSS
All content for CausalML Weekly is the property of Jeong-Yoon Lee and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/43986683/43986683-1751327536483-6566d93ab1e54.jpg
CausalML Book Ch9: Statistical Inference in Nonlinear Regression Models
CausalML Weekly
22 minutes 20 seconds
4 months ago
CausalML Book Ch9: Statistical Inference in Nonlinear Regression Models

This episode focuses on Double/Debiased Machine Learning (DML) methods for statistical inference on predictive and causal effects in complex regression models. It introduces Neyman orthogonality and cross-fitting as key ingredients to mitigate bias in high-dimensional settings, providing theoretical foundations and practical algorithms for Partially Linear Regression Models (PLM) and Interactive Regression Models (IRM). The text illustrates DML's application through case studies on gun ownership and 401(k) eligibility, showcasing how it provides robust estimates even when conventional methods fail due to unobserved confounding or overfitting. The authors highlight the importance of selecting high-quality machine learning estimators and the benefit of ensemble methods to minimize bias and improve the accuracy of causal inference.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
CausalML Weekly
Welcome to CausalML Weekly, the podcast where data meets decision-making. Join us as we explore the intersection of causal inference, machine learning, and real-world applications. This show will break down cutting-edge methods, foundational theory, and practical deployment of causal models. In each episode, we distill insights from influential literature, summarize complex topics with clarity, and sometimes bring on experts to discuss how causal inference is transforming industries—from uplift modeling and A/B testing to policy evaluation and personalized treatment strategies.