Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Health & Fitness
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
Loading...
0:00 / 0:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/5e/e3/35/5ee3351c-c7f8-47f9-11a3-351ebcbb4581/mza_4473540928276372728.jpg/600x600bb.jpg
Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Ludwig-Maximilians-Universität München
225 episodes
2 months ago
Die Universitätsbibliothek (UB) verfügt über ein umfangreiches Archiv an elektronischen Medien, das von Volltextsammlungen über Zeitungsarchive, Wörterbücher und Enzyklopädien bis hin zu ausführlichen Bibliographien und mehr als 1000 Datenbanken reicht. Auf iTunes U stellt die UB unter anderem eine Auswahl an Dissertationen der Doktorandinnen und Doktoranden an der LMU bereit.
Show more...
Education
RSS
All content for Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU is the property of Ludwig-Maximilians-Universität München and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Die Universitätsbibliothek (UB) verfügt über ein umfangreiches Archiv an elektronischen Medien, das von Volltextsammlungen über Zeitungsarchive, Wörterbücher und Enzyklopädien bis hin zu ausführlichen Bibliographien und mehr als 1000 Datenbanken reicht. Auf iTunes U stellt die UB unter anderem eine Auswahl an Dissertationen der Doktorandinnen und Doktoranden an der LMU bereit.
Show more...
Education
Episodes (20/225)
Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Entwicklung und Anwendung von Hochleistungs-Software für Mantelkonvektionssimulationen
The Earth mantle convects on a global scale, coupling the stress field at every point to every other location at an instant. This way, any change in the buoyancy field has an immediate impact on the convection patterns worldwide. At the same time, mantle convection couples to processes at scales of a few kilometers or even a few hundred meters. Dynamic topography and the geoid are examples of such small-scale expressions of mantle convection. Also, the depth of phase transitions varies locally, with strong influences on the buoyancy, and thus the global stress field. In order to understand these processes dynamically it is essential to resolve the whole mantle at very high numerical resolutions. At the same time, geodynamicists are trying to answer new questions with their models, for example about the rheology of the mantle, which is most likely highly nonlinear. Also, due to the extremely long timescales we cannot observe past mantle states, which calls for simulations backwards in time. All these issues lead to an extreme demand in computing power. To cater to those needs, the physical models of the mantle have to be matched with efficient solvers and fast algorithms, such that we can efficiently exploit the enormous computing power of current and future high performance systems. Here, we first give an extensive overview over the physical models and introduce some numerical concepts to solve the equations. We present a new two-dimensional software as a testbed and elaborate on the implications of realistic mineralogic models for efficient mantle convection simulations. We find that phase transitions present a major challenge and suggest some procedures to incorporate them into mantle convection modeling. Then we give an introduction to the high-performance mantle convection prototype HHG, a multigrid-based software framework that scales to some of the fastest computers currently available. We adapt this framework to a spherical geometry and present first application examples to answer geodynamic questions. In particular, we show that a very thin and very weak asthenosphere is dynamically plausible and consistent with direct and indirect geological observations.
Show more...
9 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Molecular biology of octocoral mitochondria
The mitochondria of non-bilaterian metazoans display a staggering diversity of genome organizations and also a slow rate of mtDNA evolution, unlike bilaterians, which may hold a key to understand the early evolution of the animal mitochondrion. Octocorals are unique members of Phylum Cnidaria, harboring several atypical mitochondrial genomic features, including a paucity of tRNA genes, various genome arrangements and the presence of novel putative mismatch repair gene (mtMutS) with various potential biological roles. Thus octocorals represents an interesting model for the study of mitochondrial biology and evolution. However, besides its utility in molecular phylogenetics, the mtDNA of octocorals is not studied from the perspective of DNA repair, oxidative stress response or gene expression; and there is a general lack of knowledge on the DNA repair capabilities and role of the mtMutS gene, response to climate-change, and mtDNA transcription in absence of interspersed tRNA genes of octocoral mitochondrial genome. In order to put the observed novelties in the octocoral mitochondria in an evolutionary and an environmental context, and to understand their potential functions and the consequences of their presence in conferring fitness during climate change induced stress, this study was undertaken. This dissertation aims to explore the uniqueness and diversity of octocoral mtDNA from an environmental as well as an evolutionary perspective. The thesis comprises five chapters exploring various facets of octocoral biology. The introductory section provides basic information and elaborates on the importance of studying non-bilaterian mitochondria. The first chapter sets the base for subsequent gene expression studies. Octocorals are extensively studied from a taxonomic and phylogenetic point of view. However, gene expression studies on these organisms have only recently started to appear. To successfully employ the most commonly used gene expression profiling technique i.e., the quantitation real-time PCR (qPCR), it is necessary to have an experimentally validated, treatment-specific set of stably expressed reference genes that will support for the accurate quantification of changes in expression of genes of interest. Hence, seven housekeeping genes, known to exhibit constitutive expression, were investigated for expression stability during simulated climate-changed (i.e. thermal and low-pH) induced stress. These genes were validated and subsequently used in gene expression studies on Sinularia cf. cruciata, our model octocoral. The occurrence of a mismatch repair gene, and the slow rates of mtDNA evolution in octocoral mitogenome calls for further investigations on the potential robustness of octocoral mitochondria to the increased oxidative stress. The second chapter presents a mitochondrion-centric view of climate-change stress response by investigating mtDNA damage, repair, and copy number dynamics during stress. The changes in gene expression of a set of stress-related nuclear, and mitochondrial genes in octocorals were also monitored. A robust response of octocoral mitochondria to oxidative mtDNA damage was observed, exhibiting a rapid recovery of the damaged mtDNA. The stress-specific regulation of the mtMutS gene was detected, indicating its potential involvement in stress response. The results highlight the resilience potential of octocoral mitochondria, and its adaptive benefits in changing oceans. The tRNA genes in animal mitochondria play a pivotal role in mt-mRNA processing and maturation. The influence of paucity of tRNA genes on transcription of the mitogenome in octocorals has not been investigated. The third chapter steps in the direction to understand the mitogenome transcription by investigating the nature of mature mRNAs. Several novel features not present in a “typical” animal mt-mRNAs were detected. The majority of the mitochondrial transcripts were observed as polycistronic units (i.e. the mRNA carrying i
Show more...
9 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Möglichkeiten und Chancen der Geowissenschaften innerhalb des interdisziplinären Profilfaches Naturwissenschaft und Technik der gymnasialen Sekundarstufe I in Baden-Württemberg
9 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Beschreibung von Grenzflächen-induzierten elektronischen Phasen in Oxid-Heterostrukturen mittels Dichtefunktionaltheorie
9 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Einkristallzüchtung und Charakterisierung intermetallischer Phasen des Ga-Pd-Systems
9 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
An integrative approach using remote sensing and social analysis to identify different settlement types and the specific living conditions of its inhabitants
Someday in 2007, the world population reached a historical landmark: for the first time in human history, more than half of the world´s population was urban. A stagnation of this urbanization process is not in sight, so that by 2050, already 70 percent of humankind is projected to live in urban settlements. Over the last few decades, enormous migrations from rural hinterlands to steadily growing cities could be witnessed coming along with a dramatic growth of the world’s urban population. The speed and the scale of this growth, particularly in the so called less developed regions, are posing tremendous challenges to the countries concerned as well as to the world community. Within mega cities the strongest trends and the most extreme dimensions of the urbanization process can be observed. Their rapid growth results in uncontrolled processes of fragmentation which is often associated with pronounced poverty, social inequality, socio-spatial and political fragmentation, environmental degradation as well as population demands that outstrip environmental service capacity. For the majority of the mega cities a tremendous increase of informal structures and processes has to be observed. Consequentially informal settlements are growing, which represent those characteristic municipal areas being subject to particularly high population density, dynamics as well as marginalization. They have quickly become the most visible expression of urban poverty in developing world cities. Due to the extreme dynamics, the high complexity and huge spatial dimension of mega cities, urban administrations often only have an obsolete or not even existing data basis available to be at all informed about developments, trends and dimensions of urban growth and change. The knowledge about the living conditions of the residents is correspondingly very limited, incomplete and not up to date. Traditional methods such as statistical and regional analyses or fieldwork are no longer capable to capture such urban process. New data sources and monitoring methodologies are required in order to provide an up to date information basis as well as planning strate¬gies to enable sustainable developments and to simplify planning processes in complex urban structures. This research shall seize the described problem and aims to make a contribution to the requirements of monitoring fast developing mega cities. Against this background a methodology is developed to compensate the lack of socio-economic data and to deduce meaningful information on the living conditions of the inhabitants of mega cities. Neither social science methods alone nor the exclusive analysis of remote sensing data can solve the problem of the poor quality and outdated data base. Conventional social science methods cannot cope with the enormous developments and the tremendous growth as they are too labor-, as well as too time- and too cost-intensive. On the other hand, the physical discipline of remote sensing does not allow for direct conclusions on social parameters out of remote sensing images. The prime objective of this research is therefore the development of an integrative approach − bridging remote sensing and social analysis – in order to derive useful information about the living conditions in this specific case of the mega city Delhi and its inhabitants. Hence, this work is established in the overlapping range of the research topics remote sensing, urban areas and social science. Delhi, as India’s fast growing capital, meanwhile with almost 25 million residents the second largest city of the world, represents a prime example of a mega city. Since the second half of the 20th century, Delhi has been transformed from a modest town with mainly administrative and trade-related functions to a complex metropolis with a steep socio-economic gradient. The quality and amount of administrative and socio-economic data are poor and the knowledge about the circumstances of Delhi’s residents is correspo
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Genetic diversity of selected petrosiid sponges
Sponges are simple animals that mostly inhabit the marine ecosystem. The role of sponges in the marine ecosystem and the potential of their bioactive compounds for the pharmaceutical industry have already been reviewed. Because of the extensive investigations of sponges within those two disciplines, marine ecology and chemistry, sponges are among the best-studied Metazoa. Likewise, sponges have been selected as animal models for investigating the origin of the multicellularity because sponges have a simple body structure and physiology (e.g., lack of nervous and circulatory organs). Due to their diversity and abundance in the tropics, particularly in the Indo-Pacific, sponges have also attracted taxonomists, systematists and ecologists to assess their diverseness and their phylogenetic and phylogeographic relationships. Resolving those research questions is difficult, because sponges are categorised as comparatively character poor taxa. By using only conservative taxonomy or systematics, the sponge diversity might therefore be underestimated. Inevitably, sponge biologists have to employ molecular methods as additional tools. In this research, molecular tools were used in order to analyse the taxonomy, phylogeny and phylogeographic relationships of selected sponge species. Xestospongia testudinaria & Neopetrosia exigua (Family Petrosiidae, Order Haplosclerida) were selected because of their conspicuousness in the Indo-Pacific coral reef ecosystems, whereby Xestospongia testudinaria is prominently known as the Indo-Pacific giant barrel sponge. Additionally, the order Haplosclerida has been described as an example of sponge order that has been examined systematically for a number of years and displays major discrepancy between morphology and molecular phylogenies. Molecular data suggests that the order needs revision at all taxonomic levels, which is the cause for further conflicts between taxonomists and systematists. In my research I focused mostly on sponge samples that originated from South East Asia or the Indo-Australian Archipelago (IAA). This region represents one of the best-explored marine regions in the Indo-Pacific. The aim of my research is to discover to what extent molecular tools are suitable to detect a phylogenetic signal, a phylogeographical break or a genotypic difference in the two selected sponge taxa. Several markers from the mitochondrial (mtDNA), ribosomal (rRNA) and nuclear (nucDNA) have been utilised. The 3' partition of the cytochrome oxidase subunit 1 (I3-M11 of cox1) from the mtDNA could be used to detect a genetic structure in Xestospongia testudinaria in a geographical narrow scale study of < 200 km2 in Lembeh, North Sulawesi, Indonesia (Chapter 6) and throughout the Indo-Pacific despite limitations in the sample datasets (Chapter 2). In addition, the presence of a species complex in X. testudinaria was detected with the aid of phylogenetic reconstructions from a concatenation of mtDNA sequences (I3-M11 of cox1 and the Adenosine Triphosphate Synthase F0 subunit 6 / ATP6), and a nucDNA marker, the Adenosine Triphosphate Synthase β subunit intron (ATPS-β intron) (Chapter 6). At the same time, the presence of a species complex in X. testudinaria was recognised in a broader scale study of the Indo-Australian Archipleago (IAA) (Chapter 3). As a result, selected mtDNA and nucDNA markers in this thesis are useful for the investigation of the taxonomical status and phylogeographical relationships of X. testudinaria. A phylogeographical break in the IAA region due to the Pleistocene low sea level and Holocene recolonisation events (Chapter 3) could not be recovered among X. testudinaria in a phylogeographical analysis. Similarly, overlapping I3-M11 cox1 haplotypes between X. testudinaria, X. muta and X. bergquistia were recovered. This might be due to the presence of ancient polymorphisms on the barrel sponge mtDNA markers. Molecular tools are also used to help identifying my second selected sponge s
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
The life and death of heterogeneity in magmas
Explosive volcanism is one of the most catastrophic material failure phenomena. During magma ascent, fragmentation produces particulate magma, which, if deposited above the glass transition of the interstitial melt, will sinter viscously. In-conduit tuffisites, conduit wall breccias and ash deposited from exceptionally hot pyroclastic flows are scenarios in which sintering by viscous flow is possible. Therefore, understanding the kinetics of sintering and the characteristic timescales over which magma densifies are critical to understanding the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by a recovery of material strength towards that of a pore-free, dense magma. Understanding damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are also crucial for the application of micromechanical models and material failure forecasting laws. Powdered standard glass and industrial glass beads have been used to explore sintering mechanisms at ambient pressure conditions and temporal evolution of connected and isolated pore-structure. I observe that sintering under low axial stress is essentially particle size, surface tension and melt viscosity controlled. I found that the timescales over which the bulk density approaches that of a pore-free melt at a given temperature is dependent on the particle-contact surface area, which can be estimated from the particle shape, the packing type and the initial total porosity. Granulometric constraint on the starting material indicates that the fraction of finer particles controls the rate of sintering as they cluster in pore spaces between larger particles and have a higher driving force for sintering due to their higher surface energy to volume ratio. Consequently, the resultant sample suite has a range of microstructures because the viscous sintering process promotes a fining of pores and a coarsening of particles. In a volcano, newly formed sintering material will then further contribute to magma-plugging of the conduit and its mechanical properties will affect magma rupture and its associated precursory signals. This consideration permitted me to explore the effect of sintering on the stress required for dynamic macroscopic failure of synthesised samples and assess the ability of precursory microseismic signals to be used as a failure forecast proxy at conditions relevant to shallow volcanic conduits. To this end, the samples were subjected to mechanical tests under a constant rate of deformation and at a temperature in the region of the material glass transition. A dual acoustic emission rig was employed to track the occurrence of brittle fracturing. The monitored acoustic dataset was then exploited to systematically assess the accuracy of the failure forecasting method as a function of heterogeneity (cast as porosity) since it acts as nucleating site for fracture propagation. The pore-emanating crack model describes well the peak stress at failure in the elastic regime for these materials. I show that the failure forecast method predicts failure within 0-15% error at porosities >0.2. However, when porosities are <0.2, the forecast error associated with predicting the failure time increases to >100%. I interpret these results as a function of the low efficiency with which strain energy can be released in the scenario where there are few or no heterogeneities from which cracks can propagate. These observations shed light on questions surrounding the variable efficacy of the failure forecast method applied to active volcanoes. In particular, they provide a systematic demonstration of the fact that a good understanding of material properties is required. Thus I wish to emphasise the need for a better coupling of empirical failure forecasting models with mechanical parameters, such as failure criteria for heterogeneous materials, and point to the implications of this for a broad range of material-based disciplines.
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Magnetic properties of iron-nickel metals and alloys under high pressure with relevance to planetary cores
This dissertation explores the effects of pressure on the magnetic remanence of iron-nickel and iron-silicon alloys relevant to the solid inner cores of the terrestrial planets and Earth’s moon. The Earth’s inner core likely comprises mostly pure iron in a hexagonal close packed (hcp) structure. Experiments on pure iron powder and foil were carried out up to 21 GPa at room temperature. The most important conclusion from this work is that either hcp-iron is ferromagnetic or that a poorly understood, intermediate hcp phase of iron is ferromagnetic. It was also determined that the results must be corrected for magnetic shape anisotropy, which is related either to the original sample material (foil) or how the bulk sample volume changes shape due to increasing oblateness of the chamber during pressurization. Fe-Ni alloys in the face centered cubic (fcc) phase with compositions around Fe64Ni36, called Invar, exhibit near-null thermal expansion, making them useful for technological applications. Models explaining the Invar effect evoke magnetovolume effect that compensate for thermal expansion. Previous work suggested that the Curie temperature of Fe64Ni36 decreases 35 K per GPa, which predicts that around 5 GPa, Fe64Ni36 will turn paramagnetic. Our experiments on Fe64Ni36 found a marked decrease in magnetization between 5-7 GPa, consistent with former studies, but that it remains ferromagnetic until 16 GPa. The magnetic remanence of low Ni Invar alloys increases faster with pressure than for other body-centered-cubic compositions due to the higher magnetostriction of the low Ni Invar metals. Experimental results on body centered cubic (bcc) Fe-Ni alloys match well with those for pure iron-- again leading to the conclusion that either an intermediate hcp phase, or that the hcp phase itself, is ferromagnetic. The ubiquitous enhancement in magnetization under pressure, or during pressure release, of the Fe-Ni and Fe-Si alloys is associated with strain-induced martensitic effects. Finally, a defocused laser heating technique was developed to measure the Curie temperature in diamond or moissanite anvil cells. Preliminary results on titanomagnetite (Fe2.4Ti0.6O4) are broadly consistent with previous work.
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Paleogeographic reconstructions in the western mediterranean and implications for permian pangea configurations
Bereits zu Beginn des 20. Jahrhunderts entwickelte Alfred Wegener seine allgemein bekannte Rekonstruktion der Kontinente, indem er die Fragmente kontinentaler Kruste durch Schließung der großen Ozeane entlang ihrer heutigen Küstenlinien zusammenfügte, so dass alle Kontinente zu einer Landmasse vereint waren. Den resultierenden Superkontinent nannte er "Pangäa" (Wegener, 1920). In dieser Rekonstruktion liegen sich Nord- und Südamerika gegenüber und Nordwestafrika grenzt an die Südostküste Nordamerikas. Lange Zeit nahm man an, dass die Paläogeographie dieses Superkontinents sich im Laufe seiner Existenz nicht bedeutend verändert hat, sondern dass die Kontinente sich im Jura im Wesentlichen aus der gleichen Konfiguration heraus voneinander gelöst haben, zu der sie sich ursprünglich im Paläozoikum zusammengefunden hatten. In der Tat gibt es vielfältige geologische, paläontologische und geophysikalische Hinweise dafür, dass Wegeners Pangäa-Konfiguration von der späten Trias bis in den frühen Jura Bestand hatte. In den späten Fünfzigerjahren des vergangenen Jahrhunderts entwickelte sich mit der Paläomagnetik eine Methode, die es ermöglicht, die Bewegungen der Kontinente über das Alter des ältesten bekannten Ozeanbodens hinaus zu rekonstruieren. Aufgrund des Dipolcharakters des Erdmagnetfeldes gilt das jedoch nur für die Rekonstruktion von paläogeographischen Breitenlagen, die Lage bezüglich der Längengrade kann mit Hilfe des Erdmagnetfeldes nicht eindeutig bestimmt werden. Eine nicht unerhebliche Anzahl paläomagnetischer Studien hat gezeigt, dass Wegeners Pangäarekonstruktion, auch Pangäa A genannt, mit globalen paläomagnetischen Daten in prä-triassischer Zeit nicht kompatibel ist. Zwingt man die Nord- und Südkontinente Pangäas, Laurasia und Gondwana für diese Zeit in die Pangäa A Konfiguration, so ergibt die auf paläomagnetischen Daten basierende paläogeographische Rekonstruktion ein signifikantes Überlappen kontinentaler Krustenanteile (siehe z. B. Van der Voo (1993); Muttoni et al. (1996, 2003) und darin zitierte Werke). Ein solches Überlappen lässt sich jedoch mit grundlegenden geologischen Prinzipien nicht vereinen. Im Lauf der Jahrzehnte wurden vielfältige alternative prä-triassische paläogeographische Pangäarekonstruktionen erstellt, die im Einklang mit den paläomagnetischen Daten sind. Der Hauptunterschied im Vergleich dieser Rekonstruktionen zur klassischen Pangäa A Konfiguration liegt in der Lage der Südkontinente relativ zu den Nordkontinenten. Um den kontinentalen Überlapp zu vermeiden, werden die Südkontinente unter Beibehaltung ihrer Breitenlage um ca. 30 Längengrade relativ zu den Nordkontinenten weiter im Osten platziert, so dass Nordwestafrika gegenüber Europa zu liegen kommt (Pangäa B, Irving (1977)). Da - wie erwähnt - der Dipolcharakter des Erdmagnetfeldes keine Aussagen über die Position der Kontinente bezüglich der Längengrade zulässt, ist dies mit den paläomagnetischen Daten vereinbar. Die alternativen Konfigurationen müssen jedoch alle vor dem Auseinanderbrechen Pangäas im Jura wieder in die für diesen Zeitraum allgemein akzeptierte Wegener-Konfiguration zurückgeführt werden. Dies geschieht - wiederum im Einklang mit den paläomagnetischen Daten - unter Beibehaltung der Breitenlage der Kontinente entlang einer postulierten kontinentalen dextralen Scherzone. Der Versatz von 2000 bis 3000 km fand laut Muttoni et al. (2003) in einem Zeitraum von ca. 20 Ma im frühen Perm statt. Dadurch ergibt sich eine entsprechend hohe Versatzrate von 10 bis 15 cm/a. Diese Arbeit befasst sich im Rahmen mehrerer paläomagnetischer Studien mit der Suche nach dieser großen Scherzone, deren Existenz seit Jahrzehnten umstritten ist. Der große Versatz wurde vermutlich von mehreren Störungssegmenten aufgenommen, die eine mehrere hundert Kilometer breite diffuse und segmentierte Scherzone bildeten. Paläogeographische Rekonstruktionen legen nahe, dass die Scherzone unter Anderem den Bereich des heutigen Mittelmeerraumes umfasst hat
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Crystallization of carbonate and sulfate minerals in organic matrices
Biological carbonate hard tissues, such as the shell of the bivalve Mytilus edulis, are composites of biopolymers and minerals. M. edulis has two distinct layers, the outer layer consists of fibrous calcite and the inner layer is composed of nacreous aragonite. Close to the interface between nacreous aragonite and fibrous calcite, a 1-2 micrometer wide zone exists that consists of granular aragonite. Aragonite granules and tablets as well as calcite fibrous are embedded into matrix biopolymers. In order to understand the composite nature of these hard tissues, biomimetic experiments using hydrogels were carried out. Hydrogels are able to model biogenic matrix environments due to their ability to confine space and to determine diffusion rates, local concentrations and supersaturation of the solutes. Hydrogels have local crystallization microenvironment that is distinguished from that in solution by confinement of solutes in the hydrogel pores. However, hydorgels only mimic biological extracellular matrices to some extent as the hydrogel fiber organization lacks any order, unlike it is in the case of the cholesteric liquid phase, e. g. chitin. The hydrogel strength is adjustable by changing its solid content. It further increases local hydrogel fiber co-aligments that to some extent will mimic organic matrices in biological hard tissues. Different kinds of hydrogels were used to study calcite crystallization (silica, agarose, gelatin). As each hydrogel has different characteristics, hydrogels can act differently in promoting or inhibiting crystallization. Hydrogels have an ability to mechanically impede the growth of a crystal depending on the strength of the hydrogel. Gelatin hydrogel is a poly-peptide material derived from natural collagen through hydrolytic degradation. The hyrolitic degradation breaks the triple-helix structure of collagen into single-strand molecules. Gelatin contains both acidic and basic amino acids with isoelectric point values near ∼5 and with predominance of acidic moieties. Agarose hydrogel is a linear polysaccharide extracted from marine red algae. It consists of beta-1,3 linked D-galactose and alpha-1,4 linked 3,6-anhydro-alpha-L-galactose residues. Gelatin and agarose hydrogels are composed of a fibrous structure that have varying mesh void dimensions depending on the hydrogel solid content. Hydrogel with 2.5 wt % gelatin solid content exerts less pressure against the growing calcite crystal aggregate than a hydrogel with 10 wt % gelatin solid content. Silica hydrogel does not exert strong pressure against the growing calcite crystal aggregate due to its nature as it is composed of minute (less than 20 nm) sized spherical particles that do not appear to form a network. The hydrogel strength together with the growth rate of the crystal defines the amount of incorporated hydrogel into the growing calcite crystal aggregate such that a strong hydrogel will incorporate more gel into the calcite crystal than a weak hydrogel. Calcite grown in Mg-free silica hydrogels has a rhombohedral shape and is elongated on the c-axis. It grows as dumbbell-shaped aggregates in the presence of Mg. Silica hydrogel either Mg-free or Mg-bearing does not give a major influence on the co-orientation of the obtained crystal aggregate. Calcite grown in Mg-free agarose has two morphologies: rhombohedron-shaped calcite crystals and calcite radial aggregates. Calcite grown in Mg-bearing agarose has sheaf-like and peanut like morphologies. The presence of Mg in agarose influences the co-orientation of calcite crystals within calcite Mg-bearing agarose composites. The calcite/Mg-free agarose composite has several large crystal subunits while the calcite/Mg-bearing agarose composite shows a spherulitic microstructure. In the case of gelatin hydrogel, the precipitate consists of calcite aggregates that have a variety of features i.e. the formation of mosaic crystals and mesocrystal-like subunits in one aggregate, the formation o
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Numerische Modellierung des Wärme- und Stoffhaushaltes des Ammersees
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Analyzing and modeling the use of common property pastures in Grindelwald, Switzerland
Problem. More than ever, some of the biggest challenges to society involve governance of natural resources. From large-scale resource systems such as the rain forest and oceans to small-scale systems such as lakes or alpine pastures, cooperative efforts are required to ensure sustainable and yet productive use of natural resources. In Switzerland, the management of alpine pastures has for centuries been predominantly organized by local governance institutions, avoiding an overuse of the scarce resources. During the past decade, the use and maintenance of common property pastures (CPP) is declining, leading to land abandonment and forest regrowth. However, CPP provide significant services to the mountain regions, such as additional grazing grounds, assets for the tourism industry, protection from soil erosion, water run-off and landslides, and high biodiversity. These services are currently threatened by reduced use and maintenance of the CPP. Research Aims. The research presented herein aims for a better understanding of social-ecological interactions driving the use of CPP to provide policy recommendations for the sustainable governance of CPP. Methods. To generate a holistic understanding of the variables driving CPP use, this research used multiple methods to investigate CPP use in Grindelwald, Switzerland as a social-ecological system (SES). The research was structured in 4 modules. First, qualitative methods were applied to analyze institutional change in the governance of CPP. Second, regression models were built from survey data to better understand farmers’ land-use decision. Third, an analysis of the ecological system was conducted bases on land-cover statistics. Forth, a systems dynamics model of the local SES was built and combined with formative scenario analysis to investigate potential future developments of CPP use. Results. The outcomes of the different modules suggest that: First, local governance systems originally designed to prevent overuse of CPP are able to adapt to problems of declining use and maintenance of CPP by altering a set of rules. Second, farmers’ use of CPP depend on personal attributes, including farm size, norms, and dependence on the resource. Furthermore, the analysis suggests that high local demand and prices for alpine cheese are a central factor in the sustainable use of CPP. Third, the land-cover analysis showed that afforestation occurs in Grindelwald at a relatively moderate pace and defines the area most prone to afforestation and bush encroachment. Fourth, the simulation model allows for the display of complex social-ecological interactions, showing that afforestation tendencies are likely to continue, although at different pace depending on the scenario setting. Conclusion. This research provides a better understanding of CPP use through the analysis of the subsystem characterizing the SES. It showed how the general framework for analyzing social-ecological systems can be operationalized using a broad set of methods. It thereby contributed and advanced central themes within the study of the commons such as institutional analysis, users’ behavior in cooperative dilemmas, and modeling of SES. The integration of the findings from different modules into a simulation provided insights about the effects of different policies on the sustainability of the SES, and thereby demonstrated why particular policy blueprints will rather accelerate than counteract the problem of CPP abandonment.
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Paleozoic paleogeography of the south western part of the Central Asian Orogenic Belt
The Central Asian Orogenic Belt (CAOB) is one of the world's largest accretionary orogens, which was active during most of the Paleozoic. In recent years it has again moved into focus of the geological community debating how the acrreted lithospheric elements were geographical arranged and interacting prior and/or during the final amalgamation of Kazakhstania. In principal two families of competing models exist. One possible geodynmaic setting is based on geological evidence that a more or less continuous giant arc connecting Baltica and Siberia in the early Paleozoic was subsequently dissected and buckled. Alternatively an archipelago setting, similar to the present day south west Pacific was proposed. This thesis collates three studies on the paleogeography of the south western part of the CAOB from the early Paleozoic until the latest Paleozoic to earliest Mesozoic. It is shown how fragments of Precambrian to early Paleozoic age are likely to have originated from Gondwana at high southerly paleolatitudes (~500 Ma), which got then accreted during the Ordovician (~460 Ma), before this newly created terrane agglomerate (Kazakhstania) migrated northwards crossing the paleo-equator. During the Devonian and the latest Early Carboniferous (~330 Ma) Kazakhstania occupied a stable position at about ~30°N. At least since this time the area underwent several stages of counterclockwise rotational movements accompanying the final amalgamation of Eurasia (~320 - ~270 Myr). This overall pattern of roughly up to 90° counterclockwise bending was replaced by internal relative rotational movements in the latest Paleozoic, which continued probably until the early Mesozoic or even the Cenozoic. In Chapter 2 a comparison of declination data acquired by a remagnetization process during folding in the Carboniferous and coeval data from Baltica and Siberia lead to a documentation and quantification of rotational movements within the Karatau Mountain Range. Based on this results it is very likely that the rotational reorganization started in the Carboniferous and was active until at least the early Mesozoic. Additionally, the data shows that maximal declination deviation increases going from the Karatau towards the Tianshan Mountains (i.e. from North to South). This observation supports models claiming that Ural mountains, Karatau and Tianshan once formed a straight orogen subsequently bent into a orocline. The hinge of this orocline is probably hidden under the sediments of the Caspian basin. In chapter 3 we show that inclination shallowing has affected the red terrigenous sediments of Carboniferous age from the North Tianshan. The corrected inclination values put this part of the Tianshan in a paleolatitude of around 30°N during Carboniferous times. These results contradict previously published paleopositions of the area and suggest a stable latitudinal position between the Devonian and the Carboniferous. Chapter 4 presents paleomagnetic data from early Paleozoic rocks from within the North Tianshan. They imply a second collisional accretion event of individual terranes in the Ordovician. To further constrain the dimensions of these early Paleozoic terranes, chapter 5 presents a compilation of all available paleomagnetic data from the extended study region of southern Kazakhstan and Kyrgyzstan. Apart from a broad coherence of paleolatitudes of all studies at least since the Ordovician and the exclusive occurrence of counterclockwise declination deviations, no areas with the same rotational history can be detected. Also a clear trend caused by oroclinal bending can not be observed. We conclude that first order counterclockwise oroclinal bending, shown in chapter 2, resulted in brittle deformation within the mountain belt and local block rotations. In order to improve our understanding of intra-continental deformation a study combining the monitoring of recent deformation (Global Positioning System, GPS) with a paleomagnetic study of Ce
Show more...
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Flow and sedimentation of pyroclastic density currents
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Entwicklung und Anwendung eines Schmelz- und Abflussmodells für schuttbedeckte Gletscher im Tien Schan
10 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Capacity of the hyperspectral satellite mission EnMAP for the multiseasonal monitoring of biophysical and biochemical land surface parameters in agriculture by transferring an analysis method for airborne image spectroscopy to the spaceborne scale
11 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Ecological plasticity and divergence processes of the Iranian inland species of Aphanius (Teleostei, Cyprinodontidae), with focus on A. sophiae and A. farsicus in the Kor River and Maharlu Lake basins, Southwestern Iran
11 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Limno-physikalische Modellierung möglicher Folgen des Klimawandels für den Ammersee auf Basis regionaler Klimamodelldaten
11 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Reducing non-uniqueness in seismic inverse problems
The scientific investigation of the solid Earth's complex processes, including their interactions with the oceans and the atmosphere, is an interdisciplinary field in which seismology has one key role. Major contributions of modern seismology are (1) the development of high-resolution tomographic images of the Earth's structure and (2) the investigation of earthquake source processes. In both disciplines the challenge lies in solving a seismic inverse problem, i.e. in obtaining information about physical parameters that are not directly observable. Seismic inverse studies usually aim to find realistic models through the minimization of the misfit between observed and theoretically computed (synthetic) ground motions. In general, this approach depends on the numerical simulation of seismic waves propagating in a specified Earth model (forward problem) and the acquisition of illuminating data. While the former is routinely solved using spectral-element methods, many seismic inverse problems still suffer from the lack of information typically leading to ill-posed inverse problems with multiple solutions and trade-offs between the model parameters. Non-linearity in forward modeling and the non-convexity of misfit functions aggravate the inversion for structure and source. This situation requires an efficient exploitation of the available data. However, a careful analysis of whether individual models can be considered a reasonable approximation of the true solution (deterministic approach) or if single models should be replaced with statistical distributions of model parameters (probabilistic or Bayesian approach) is inevitable. Deterministic inversion attempts to find the model that provides the best explanation of the data, typically using iterative optimization techniques. To prevent the inversion process from being trapped in a meaningless local minimum an accurate initial low frequency model is indispensable. Regularization, e.g. in terms of smoothing or damping, is necessary to avoid artifacts from the mapping of high frequency information. However, regularization increases parameter trade-offs and is subjective to some degree, which means that resolution estimates tend to be biased. Probabilistic (or Bayesian) inversions overcome the drawbacks of the deterministic approach by using a global model search that provides unbiased measures of resolution and trade-offs. Critical aspects are computational costs, the appropriate incorporation of prior knowledge and the difficulties in interpreting and processing the results. This work studies both the deterministic and the probabilistic approach. Recent observations of rotational ground motions, that complement translational ground motion measurements from conventional seismometers, motivated the research. It is investigated if alternative seismic observables, including rotations and dynamic strain, have the potential to reduce non-uniqueness and parameter trade-offs in seismic inverse problems. In the framework of deterministic full waveform inversion a novel approach to seismic tomography is applied for the first time to (synthetic) collocated measurements of translations, rotations and strain. The concept is based on the definition of new observables combining translation and rotation, and translation and strain measurements, respectively. Studying the corresponding sensitivity kernels assesses the capability of the new observables to constrain various aspects of a three-dimensional Earth structure. These observables are generally sensitive only to small-scale near-receiver structures. It follows, for example, that knowledge of deeper Earth structure are not required in tomographic inversions for local structure based on the new observables. Also in the context of deterministic full waveform inversion a new method for the design of seismic observables with focused sensitivity to a target model parameter class, e.g. density structure, is develo
Show more...
11 years ago

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Die Universitätsbibliothek (UB) verfügt über ein umfangreiches Archiv an elektronischen Medien, das von Volltextsammlungen über Zeitungsarchive, Wörterbücher und Enzyklopädien bis hin zu ausführlichen Bibliographien und mehr als 1000 Datenbanken reicht. Auf iTunes U stellt die UB unter anderem eine Auswahl an Dissertationen der Doktorandinnen und Doktoranden an der LMU bereit.