The blood-brain barrier (BBB), formed by brain endothelial cells, pericytes, and astrocytes, is organized into a neurovascular unit that regulates the exchange of proteins between blood circulation and brain parenchyma. Human stem-cell-based models using brain endothelial cells are a powerful tool to investigate how disease-related conditions might affect the blood-brain barrier integrity. However, the cell type composition is critical to faithfully model transcytosis across the blood-brain b...
All content for The Stem Cell Report with Janet Rossant is the property of ISSCR and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
The blood-brain barrier (BBB), formed by brain endothelial cells, pericytes, and astrocytes, is organized into a neurovascular unit that regulates the exchange of proteins between blood circulation and brain parenchyma. Human stem-cell-based models using brain endothelial cells are a powerful tool to investigate how disease-related conditions might affect the blood-brain barrier integrity. However, the cell type composition is critical to faithfully model transcytosis across the blood-brain b...
Movin’ On Out: Mobilizing HSCs From The Bone Marrow
The Stem Cell Report with Janet Rossant
33 minutes
1 month ago
Movin’ On Out: Mobilizing HSCs From The Bone Marrow
Hematopoietic stem cells (HSCs) normally reside in the bone marrow niche but can traffic across the bone marrow endothelium into the bloodstream to populate different niches. This process of HSC mobilization from the bone marrow to the blood, is an increasingly favored procedure to obtain HSCs for hematopoietic cell transplantation therapy. Though mobilization is robust in many donors due to years of refined protocols and drug combinations, the process remains difficult or contraindicated amo...
The Stem Cell Report with Janet Rossant
The blood-brain barrier (BBB), formed by brain endothelial cells, pericytes, and astrocytes, is organized into a neurovascular unit that regulates the exchange of proteins between blood circulation and brain parenchyma. Human stem-cell-based models using brain endothelial cells are a powerful tool to investigate how disease-related conditions might affect the blood-brain barrier integrity. However, the cell type composition is critical to faithfully model transcytosis across the blood-brain b...