In this episode of The New Quantum Era podcast, your host Sebastian Hassinger interviews two of the field's most well-known figures, John Preskill and Rob Schoelkopf, about the transition of quantum computing into a new phase that John is calling "megaquop," which stands for "a million quantum operations." Our conversation delves into what this new phase entails, the challenges and opportunities it presents, and the innovative approaches being explored to make quantum computing perform better and become more useful. This episode was made with the kind support of the American Physical Society and Quantum Circuits, Inc. Here’s what you can expect from this insightful discussion:
Mentioned in this Episode:
In this episode of The New Quantum Era podcast, host Sebastian Hassinger speaks with Steve Girvin, professor of physics at Yale University, about quantum memory - a critical but often overlooked component of quantum computing architecture. This episode was created with support from the American Physical Society and Quantum Circuits, Inc.
Episode Highlights
Key Concepts
References
In this episode of The New Quantum Era, host Sebastian Hassinger interviews Professor Will Oliver from MIT about the advancements in fluxonium qubits. The discussion delves into the unique features of fluxonium qubits compared to traditional transmon qubits, highlighting their potential for high fidelity operations and scalability. Oliver shares insights from recent experiments at MIT, where his team achieved nearly five nines fidelity in single-qubit gates, and discusses how these qubits could be scaled up for larger quantum computing architectures through innovative control systems.
Major Points Covered:
This episode brought to you with support from APS and from Quantum Machines, a big thank you to both organizations!
Professor Zoe Holmes from EPFL in Lausanne, Switzerland, discusses her work on quantum imaginary time evolution and variational techniques for near-term quantum computers. With a background from Imperial College London and Oxford, Holmes explores the limits of what can be achieved with NISQ (Noisy Intermediate-Scale Quantum) devices.
Key topics covered:
Welcome to another episode of The New Quantum Era, where we delve into the cutting-edge developments in quantum computing. with your host, Sebastian Hassinger. Today, we have a unique episode featuring representatives from two companies collaborating on groundbreaking quantum algorithms and hardware. Joining us are Sean Weinberg, Director of Quantum Applications at Quantum Circuits Incorporated, and Guillermo Garcia Perez, Chief Science Officer and co-founder at Algorithmiq. Together, they discuss their partnership and the innovative work they are doing to advance quantum computing applications, particularly in the field of chemistry and pharmaceuticals.
Key Highlights:
Mentioned in this Episode:
Tune in to hear about the exciting advancements in quantum computing and how these two companies are pushing the boundaries of what’s possible in this new quantum era, and if you like what you hear, check out www.newquantumera.com, where you'll find our full archive of episodes and a preview of the book I'm writing for O'Reilly Media, The New Quantum Era.
Welcome back to The New Quantum Era, a podcast by Sebastian Hassinger and Kevin Rowney. After a brief hiatus, we’re excited to bring you a fascinating conversation with a true pioneer in the field of quantum computing, Alán Aspuru-Guzik. Alán is a professor at the University of Toronto and a leading figure in quantum computing, known for his foundational work on the Variational Quantum Eigensolver (VQE). In this episode, we delve into the evolution of VQE and explore Alán’s latest groundbreaking work on the Generative Quantum Eigensolver (GQE). Expect to hear about the intersection of quantum computing and machine learning, and how these advancements could shape the future of the field.
Key Highlights:
Mentioned in this episode:
Stay tuned for more exciting episodes and deep dives into the world of quantum computing. If you enjoyed this episode, please subscribe, review, and share it on your preferred social media platforms. Thank you for listening!
Welcome to another episode of The New Quantum Era, hosted by Sebastian Hassinger and Kevin Rowney. Today, we have the privilege of speaking with Dr. Robert Schoelkopf, Sterling Professor of Applied Physics at Yale, Director of the Yale Quantum Institute, and CTO and co-founder at Quantum Circuits, Inc. Dr. Schoelkopf is a pioneering figure in the field of quantum computing, particularly known for his contributions to the development of the transmon qubit architecture. In this episode, we delve into the history and future of quantum computing, focusing on the latest advancements in error correction and the innovative dual rail qubit architecture.
Key Highlights:
Mentioned in this Episode:
Join us as we explore these groundbreaking advancements and their implications for the future of quantum computing.
In this episode of The New Quantum Era, Sebastian talks with Martin Schultz, Professor at TU Munich and board member of the Leibniz Supercomputing Center (LRZ) about the critical need to integrate quantum computers with classical supercomputing resources to build practical quantum solutions. They discuss the Munich Quantum Valley initiative, focusing on the challenges and advancements in merging quantum and classical computing.
Main Topics Discussed:
Welcome to The New Quantum Era, a podcast hosted by Sebastian Hassinger and Kevin Rowney. In this episode, we have an insightful conversation with Dr. Toby Cubitt, a pioneer in quantum computing, a professor at UCL, and a co-founder of Phasecraft. Dr. Cubitt shares his deep understanding of the current state of quantum computing, the challenges it faces, and the promising future it holds. He also discusses the unique approach Phasecraft is taking to bridge the gap between theoretical algorithms and practical, commercially viable applications on near-term quantum hardware.
Key Highlights:
Papers Mentioned in this episode:
Other sites:
In this episode of The New Quantum Era podcast, hosts Sebastian Hassinger and Kevin Roney interview Jessica Pointing, a PhD student at Oxford studying quantum machine learning.
Classical Machine Learning Context
Quantum Neural Networks (QNNs)
Implications and Future Directions
In summary, this insightful interview with Jessica Pointing highlights the current challenges and open questions in quantum machine learning, providing a framework for critically evaluating progress in the field. While the path to quantum advantage in machine learning remains uncertain, ongoing research continues to expand our understanding of the possibilities and limitations of QNNs.
Paper cited in the episode:
Do Quantum Neural Networks have Simplicity Bias?
Sebastian is joined by Susanne Yelin, Professor of Physics in Residence at Harvard University and the University of Connecticut.
Susanne's Background:
Quantum Machine Learning Challenges
Quantum Reservoir Computing
Quantum Chemistry Application
Future Directions
Welcome back to The New Quantum Era, the podcast where we explore the cutting-edge developments in quantum computing. In today’s episode, hosts Sebastian Hassinger and Kevin Rowe are joined by Dr. Julien Camirand Lemyre, the CEO and co-founder of Nord Quantique. Nord Quantique is a startup spun out from the University of Sherbrooke in Quebec, Canada, and is making significant strides in the field of quantum error correction using innovative superconducting qubit designs. In this conversation, Dr. Camirand Lemyre shares insights into their groundbreaking research and the innovative approaches they are taking to improve quantum computing systems.
Listeners can expect to learn about:
Highlights:
Mentioned in this episode:
Tune in to hear about these exciting developments and what they mean for the future of quantum computing!
Welcome to another episode of The New Quantum Era! Today, we have a fascinating conversation with Professor Jens Eisert, a veteran in the field of quantum information science. Jens takes us through his journey from his PhD days, delving into the role of entanglement in quantum computing and communication, to leading a team that bridges theoretical and practical aspects of quantum technology. In this episode, we explore the fine line between classical and quantum worlds, the potential and limitations of near-term quantum devices, and the role of theoretical frameworks in advancing quantum technologies. Here are some key highlights from our conversation:
Welcome to The New Quantum Era podcast! In today’s episode, we dive deep into the fascinating world of quantum computing and the broader tech landscape with Anastasia Marchenkova, who has a unique blend of experiences in startups, academia, and venture capital. Join us as we explore the intersections of technology, business, and education, and uncover the challenges and opportunities that lie ahead in the quantum era.
Highlights from the Interview:
Mentioned in This Episode:
In this episode of The New Quantum Era, Kevin and Sebastian are joined by a special guest, Paul Cadden-Zemansky, Associate Professor of Physics at Bard College and Director of the Physics Program. Paul is also on the Executive Committee for the International Year of Quantum at the American Physical Society and has been actively involved in the UN’s recent declaration of 2025 as the International Year of Quantum Science and Technology. With the UN resolution now official, Paul joins us to discuss the significance and plans for this global celebration of quantum mechanics.
Listeners can expect an insightful conversation covering the following key points:
Mentioned in this episode:
Join us as we delve into the exciting world of quantum mechanics and explore the plans for celebrating its centennial year!
In this episode of The New Quantum Era, host Sebastian Hassinger comes to you again from Rensselaer Polytechnic Institute, during their launch event in April 2024 for the deployment of an IBM System One quantum computer on their campus. RPI invited me to lead a panel discussion with members of their faculty and IT team, and provided a podcast studio for my use for the remainder of the week, where he recorded a series of interviews. In this episode Sebastian interviews Di Fang, an assistant professor of mathematics at Duke University and member of the Duke Quantum Center. They discuss Dr. Fang's research on the theoretical aspects of quantum computing and quantum simulation, the potential for quantum computers to demonstrate quantum advantage over classical computers, and the need to balance theory with practical applications. Key topics and takeaways from the conversation include:
- Dr. Fang's background as a mathematician and how taking a quantum computing class taught by Umesh Vazirani at UC Berkeley sparked her interest in the field of quantum information science
- The potential for quantum computers to directly simulate quantum systems like molecules, going beyond the approximations required by classical computation
- The importance of both proving theoretical bounds on quantum algorithms and working towards practical resource estimation and hardware implementation to demonstrate real quantum advantage
- The stages of development needed to go from purely theoretical quantum advantage to solving useful real-world problems, and the role of Google's quantum XPRIZE competition in motivating practical applications
- The long-term potential for quantum computing to have a disruptive impact like AI, but the risk of a "quantum winter" if practical results don't materialize, and the need for continued fundamental research by academics alongside industry efforts
In this episode of The New Quantum Era, we're diving deep into the intersection of quantum computing and chemistry with Jamie Garcia, Technical Program Director for Algorithms and Scientific Partnerships Group with IBM Quantum. Jamie brings a unique perspective, having transitioned from a background in chemistry to the forefront of quantum computing. At the heart of our discussion is the deployment of the IBM Quantum computer at RPI, marking a significant milestone as the first of its kind on a university campus. Jamie shares insights into the challenges and breakthroughs in using quantum computing to push the boundaries of computational chemistry, highlighting the potential to revolutionize how we approach complex chemical reactions and materials science.
Throughout the interview, Jamie discusses the evolution of quantum computing from a theoretical novelty to a practical tool in scientific research, particularly in chemistry. We explore the limitations of classical computational methods in chemistry, such as the reliance on approximations, and how quantum computing offers the promise of more accurate and efficient simulations. Jamie also delves into the concept of "utility" in quantum computing, illustrating how IBM's quantum computers are beginning to perform tasks that challenge classical computing capabilities. The conversation further touches on the significance of quantum computing in education and research, the integration of quantum systems with high-performance computing (HPC) centers, and the future of quantum computing in addressing complex problems in chemistry and beyond.
Jamie's homepage at IBM Research
How Quantum Computing Could Remake Chemistry, an article by Jamie Garcia in Scientific American
Sebastian interviews Professor Lin Lin during the System One ribbon cutting event at Rensselaer Polytechnic Institute in Troy, NY. Professor Lin Lin's journey from computational mathematics to quantum chemistry has been driven by his fascination with modeling nature through computation. As a student at Peking University, he was intrigued by the concept of first principles modeling, which aims to simulate chemical systems using minimal information such as atomic species and positions. Lin Lin pursued this interest during his PhD at Princeton University, working with mathematicians and chemists to develop better algorithms for density functional theory (DFT). DFT reformulates the high-dimensional quantum chemistry problem into a more tractable three-dimensional one, albeit with approximations. While DFT works well for about 95% of cases, it struggles with large systems and the remaining "strongly correlated" 5%. Lin Lin and his collaborators radically reformulated DFT to enable calculations on much larger systems, leading to his faculty position at UC Berkeley in 2014.
In 2018, a watershed year marked by his tenure, Lin Lin decided to tackle the challenging 5% of strongly correlated quantum chemistry problems. Two emerging approaches showed promise: artificial intelligence (AI) and quantum computing. Both AI and quantum computing are well-suited for handling high-dimensional problems, albeit in fundamentally different ways. Lin Lin aimed to leverage both approaches, collaborating on the development of deep molecular dynamics using AI to efficiently parameterize interatomic potentials. On the quantum computing side, his group worked to reformulate quantum chemistry for quantum computers. Despite the challenges posed by the COVID-19 pandemic, Lin Lin and his collaborators have made significant strides in combining AI and quantum computing to push the boundaries of computational chemistry simulations, bridging the fields of mathematics, chemistry, AI, and quantum computing in an exciting new frontier.
Thanks again to Professor Lin and everyone at RPI for hosting me and providing such an amazing opportunity to interview so many brilliant researchers.
Sebastian is joined by Olivia Lanes, Global Lead for Education and Learning, IBM Quantum to discuss quantum education, IBM's efforts to provide resources for workforce development, the importance of diversity and equality in STEM, and her own personal journey from experimental physics to community building and content creation. Recorded on the RPI campus during the launch event of their IBM System One quantum computer.
Key Topics:
- Olivia's background in experimental quantum physics and transition to education at IBM Quantum
- Lowering barriers to entry in quantum computing education through IBM's Quantum Experience platform, Qiskit open source framework, and online learning resources
- The importance of reaching students early, especially women and people of color, to build a diverse quantum workforce pipeline
- Quantum computing as an interdisciplinary field requiring expertise across physics, computer science, engineering, and other domains
- The need to identify real-world problems and use cases that quantum computing can uniquely address
- Balancing the hype around quantum computing's potential with setting realistic expectations
- International collaboration and providing global access to quantum education and technologies
- The unique opportunity of having an IBM quantum computer on the RPI campus to inspire students and enable cutting-edge research
Resources Mentioned:
- IBM Quantum learning platform
- "Introduction to Classical and Quantum Computing" by Tom Wong
- Qiskit YouTube channel
In summary, this episode explores the current state of quantum computing education, the importance of making it accessible to a broad and diverse group of students from an early age, and how academia and industry can partner to build the quantum workforce of the future. Olivia provides an insider's perspective on IBM Quantum's efforts in this space.
For this episode, Sebastian is on his own, as Kevin is taking a break. Sebastian accepted a gracious invite to the ribbon cutting event at Rensselaer Polytechnic Institute in Troy, NY, where the university was launching their on-campus IBM System One -- the first commercial quantum computer on a university campus!
This week, the episode is a recording a live event hosted by Sebastian. The panel of RPI faculty and staff talk about their decision to deploy a quantum computer in their own computing center -- a former chapel from the 1930s! - what they hope the RPI community will do with the device, and the role of academic partnership with private industry at this stage of the development of the technology.
Joining Sebastian on the panel were: