Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Kids & Family
About Us
Contact Us
Copyright
© 2024 PodJoint
Loading...
0:00 / 0:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts114/v4/b1/e8/0c/b1e80c5b-3181-579b-fb95-473a50185333/mza_16396670359310005748.jpg/600x600bb.jpg
Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
Brian T. O’Neill from Designing for Analytics
100 episodes
4 days ago
Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.
Show more...
Technology
Arts,
Business,
Design,
Management
RSS
All content for Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management) is the property of Brian T. O’Neill from Designing for Analytics and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.
Show more...
Technology
Arts,
Business,
Design,
Management
Episodes (20/100)
Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
Who Can Succeed in a Data or AI Product Management Role?
For more on this episode, check out the episode show notes and the transcript here: https://designingforanalytics.com/resources/episodes/who-can-succeed-in-a-data-or-ai-product-management-role/ 
Show more...
2 weeks ago
50 minutes 4 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode)
Today, I'm chatting with Shri Santhanam, the  EVP of Software Platforms and Chief AI Officer of Experian North America. Over the course of this promoted episode, you’re going to hear us talk about what it takes to build useful consumer and B2B AI products. Shri explains how Experian structures their AI product teams, the company’s approach prioritizing its initiatives, and what it takes to get their AI solutions out the door. We also get into the nuances of building trust with probabilistic AI tools and the absolutely critical role of UX in end user adoption.   Note: today’s episode is one of my rare Promoted Episodes. Please help support the show by visiting Experian’s links below:     Links Shri's LinkedIn Experian Assistant | Experian Experian Ascend Platform™ | Experian 
Show more...
4 weeks ago
42 minutes 33 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear
Today, I'm chatting with Stuart Winter-Tear about AI product management. We're getting into the nitty-gritty of what it takes to build and launch LLM-powered products for the commercial market that actually produce value. Among other things in this rich conversation, Stuart surprised me with the level of importance he believes UX has in making LLM-powered products successful, even for technical audiences.     After spending significant time on the forefront of AI’s breakthroughs, Stuart believes many of the products we’re seeing today are the result of FOMO above all else. He shares a belief that I’ve emphasized time and time again on the podcast–product is about the problem, not the solution. This design philosophy has informed Staurt’s 20-plus year-long career, and it is pivotal to understanding how to best use AI to build products that meet users’ needs.   Highlights/ Skip to  Why Stuart was asked to speak to the House of Lords about AI (2:04) The LLM-powered products has Stuart been building recently (4:20) Finding product-market fit with AI products (7:44) Lessons Stuart has learned over the past two years working with LLM-power products (10:54)  Figuring out how to build user trust in your AI products (14:40) The differences between being a digital product manager vs. AI product manager (18:13) Who is best suited for an AI product management role (25:42) Why Stuart thinks user experience matters greatly with AI products (32:18) The formula needed to create a business-viable AI product (38:22)  Stuart describes the skills and roles he thinks are essential in an AI product team and who he brings on first (50:53) Conversations that need to be had with academics and data scientists when building AI-powered products (54:04) Final thoughts from Stuart and where you can find more from him (58:07)   Quotes from Today’s Episode “I think that the core dream with GenAI is getting data out of IT hands and back to the business. Finding a way to overlay all this disparate, unstructured data and [translate it] to the human language is revolutionary. We’re finding industries that you would think were more conservative (i.e. medical, legal, etc.) are probably the most interested because of the large volumes of unstructured data they have to deal with. People wouldn’t expect large language models to be used for fact-checking… they’re actually very powerful, especially if you can have your own proprietary data or pipelines. Same with security–although large language models introduce a terrifying amount of security problems, they can also be used in reverse to augment security. There’s a lovely contradiction with this technology that I do enjoy.” - Stuart Winter-Tear (5:58) “[LLM-powered products] gave me the wow factor, and I think that’s part of what’s caused the problem. If we focus on technology, we build more technology, but if we focus on business and customers, we’re probably going to end up with more business and customers. This is why we end up with so many products that are effectively solutions in search of problems. We’re in this rush and [these products] are [based on] FOMO. We’re leaving behind what we understood about [building] products—as if [an LLM-powered product] is a special piece of technology. It’s not. It’s another piece of technology. [Designers] should look at this technology from the prism of the business and from the prism of the problem. We love to solutionize, but is the problem the problem? What’s the context of the problem? What’s the problem under the problem? Is this problem worth solving, and is GenAI a desirable way to solve it? We’re putting the cart before the horse.” - Stuart Winter-Tear (11:11) “[LLM-powered products] feel most amazing when you’re not a domain expert in whatever you’re using it for. I’ll give you an example: I’m terrible at coding. When I got my hands on Cursor, I felt like a superhero. It was unbelievable what I could build. Although [LLM products] look most amazing in
Show more...
1 month ago
1 hour 1 minute 5 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product
Today, I am going to share some of the biggest challenges internal enterprise data leaders may face when creating their first revenue-generating data product. If your team is thinking about directly monetizing a data product and bringing a piece of software to life as something customers actually pay for, this episode is for you. As a companion to this episode, you can read my original article on this topic here once you finish listening!
Show more...
1 month ago
38 minutes 24 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value
Today, I’m talking with Natalia Andreyeva from Infor about AI / ML product management and its application to supply chain software. Natalia is a Senior Director of Product Management for the Nexus AI / ML Solution Portfolio, and she walks us through what is new, and what is not, about designing AI capabilities in B2B software. We also got into why user experience is so critical in data-driven products, and the role of design in ensuring AI produces value. During our chat, Natalia hit on the importance of really nailing down customer needs through solid discovery and the role of product leaders in this non-technical work. We also tackled some of the trickier aspects of designing for GenAI, digital assistants, the need to keep efforts strongly grounded in value creation for customers, and how even the best ML-based predictive analytics need to consider UX and the amount of evidence that customers need to believe the recommendations. During this episode, Natalia emphasizes a huge key to her work’s success: keeping customers and users in the loop throughout the product development lifecycle.   Highlights/ Skip to What Natalia does as a Senior Director of Product Management for Infor Nexus (1:13) Who are the people using Infor Nexus Products and what do they accomplish when using them (2:51) Breaking down who makes up Natalia's team (4:05) What role does AI play in Natalia's work? (5:32) How do designers work with Natalia's team? (7:17) The problem that had Natalia rethink the discovery process when working with AI and machine learning applications (10:28) Why Natalia isn’t worried about competitors catching up to her team's design work (14:24) How Natalia works with Infor Nexus customers to help them understand the solutions her team is building (23:07) The biggest challenges Natalia faces with building GenAI and machine learning products (27:25) Natalia’s four steps to success in building AI products and capabilities (34:53) Where you can find more from Natalia (36:49)   Quotes from Today’s Episode “I always launch discovery with customers, in the presence of the UX specialist [our designer]. We do the interviews together, and [regardless of who is facilitating] the goal is to understand the pain points of our customers by listening to how they do their jobs today. We do a series of these interviews and we distill them into the customer needs; the problems we need to really address for the customers. And then we start thinking about how to [address these needs]. Data products are a particular challenge because it’s not always that you can easily create a UX that would allow users to realize the value they’re searching for from the solution. And even if we can deliver it, consuming that is typically a challenge, too. So, this is where [design becomes really important]. [...] What I found through the years of experience is that it’s very difficult to explain to people around you what it is that you’re building when you’re dealing with a data-driven product. Is it a dashboard? Is it a workboard? They understand the word data, but that’s not what we are creating. We are creating the actual experience for the outcome that data will deliver to them indirectly, right? So, that’s typically how we work.” - Natalia Andreyeva (7:47) “[When doing discovery for products without AI], we already have ideas for what we want to get out. We know that there is a space in the market for those solutions to come to life. We just have to understand where. For AI-driven products, it’s not only about [the user’s] understanding of the problem or the design, it is also about understanding if the data exists and if it’s feasible to build the solution to address [the user’s] problem. [Data] feasibility is an extremely important piece because it will drive the UX as well.” - Natalia Andreyeva (10:50) “When [the team] discussed the problem, it sounded like a simple calculation that needed to be created [for users]. In reality, it was an entire p
Show more...
2 months ago
37 minutes 34 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
166 - Can UX Quality Metrics Increase Your Data Product's Business Value and Adoption?
Today I am going to try to answer a fundamental question: how should you actually measure user experience, especially with data products—and tie this to business value? It's easy to get lost in analytics and think we're seeing the whole picture, but I argue that this is far from the truth. Product leaders need to understand the subjective experience of our users—and unfortunately, analytics does not tell us this. The map is not the territory.   In this episode, I discuss why qualitative data and subjective experience is the data that will most help you make product decisions that will lead you to increased business value. If users aren't getting value from your product(s), and their lives aren’t improving, business value will be extremely difficult to create. So today, I share my thoughts on how to move beyond thinking that analytics is the only way to track UX, and how this helps product leaders uncover opportunities to produce better organizational value.  Ultimately, it’s about creating indispensable solutions and building trust, which is key for any product team looking to make a real impact. Hat tip to UX guru Jared Spool who inspired several of the concepts I share with you today.   Highlights/ Skip to  Don't target adoption for adoption's sake, because product usage can be a tax or benefit (3:00) Why your analytical mind may bias you—and what changes you might have to do this type of product and user research work (7:31) How "making the user's life better" translates to organizational value (10:17) Using Jared Spool's roller coaster chart to measure your product’s user experience and find your opportunities and successes (13:05) How do you measure that you have done a good job with your UX? (17:28)  Conclusions and final thoughts (21:06)   Quotes from Today’s Episode Usage doesn't automatically equal value. Analytics on your analytics is not telling you useful things about user experience or satisfaction. Why? "The map is not the territory." Analytics measure computer metrics, not feelings, and let's face it, users aren't always rational. To truly gauge user value, we need qualitative research - to talk to users - and to hear what their subjective experience is. Want *meaningful* adoption? Talk to and observe your users. That's how you know you are actually making things better. When it’s better for them, the business value will follow. (3:12) Make better things—where better is a measurement based on the subjective experience of the user—not analytics. Usable doesn’t mean they will necessarily want it. Sessions and page views don’t tell you how people *feel* about it. (7:39) Think about the dreadful tools you and so many have been forced to use: the things that waste your time and don’t let you focus on what’s really important. Ever talked to a data scientist who is sick of doing data prep instead of building models, and wondering, “why am I here? This isn’t what I went to school for.” Ignoring these personal frustrations and feelings and focusing only on your customers’ feature requests, JIRA tickets, stakeholder orders, requirements docs, and backlog items is why many teams end up building technically right, effectively wrong solutions. These end user frustrations are where we find our opportunities to delight—and create products and UXs that matter. To improve their lives, we need to dig into their workflows, identify frustrations, and understand the context around our data product solutions. Product leaders need to fall in love with the problems and the frustrations—these are the magic keys to the value kingdom. However, to do this well, you probably need to be doing less delivery and more discovery. (10:27) Imagine a line chart with a Y-axis that is "frustration" at the bottom to "delight" at the top. The X-axis is their user experience, taking place over time. As somebody uses your data product to do their job/task, you can plot their emotional journey. “Get the data, format the data, include the da
Show more...
2 months ago
26 minutes 12 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources
A challenge I frequently hear about from subscribers to my insights mailing list is how to design B2B data products for multiple user types with differing needs. From dashboards to custom apps and commercial analytics / AI products, data product teams often struggle to create a single solution that meets the diverse needs of technical and business users in B2B settings. If you're encountering this issue, you're not alone!     In this episode, I share my advice for tackling this challenge including the gift of saying "no.” What are the patterns you should be looking out for in your customer research? How can you choose what to focus on with limited resources? What are the design choices you should avoid when trying to build these products? I’m hoping by the end of this episode, you’ll have some strategies to help reduce the size of this challenge—particularly if you lack a dedicated UX team to help you sort through your various user/stakeholder demands.      Highlights/ Skip to  The importance of proper user research and clustering “jobs to be done” around business importance vs. task frequency—ignoring the rest until your solution can show measurable value  (4:29) What “level” of skill to design for, and why “as simple as possible” isn’t what I generally recommend (13:44) When it may be advantageous to use role or feature-based permissions to hide/show/change certain aspects, UI elements, or features  (19:50) Leveraging AI and LLMs in-product to allow learning about the user and progressive disclosure and customization of UIs (26:44) Leveraging the “old” solution of rapid prototyping—which is now faster than ever with AI, and can accelerate learning (capturing user feedback) (31:14) 5 things I do not recommend doing when trying to satisfy multiple user types in your b2b AI or analytics product (34:14)   Quotes from Today’s Episode If you're not talking to your users and stakeholders sufficiently, you're going to have a really tough time building a successful data product for one user – let alone for multiple personas. Listen for repeating patterns in what your users are trying to achieve (tasks they are doing). Focus on the jobs and tasks they do most frequently or the ones that bring the most value to their business. Forget about the rest until you've proven that your solution delivers real value for those core needs. It's more about understanding the problems and needs, not just the solutions. The solutions tend to be easier to design when the problem space is well understood. Users often suggest solutions, but it's our job to focus on the core problem we're trying to solve; simply entering in any inbound requests verbatim into JIRA and then “eating away” at the list is not usually a reliable strategy. (5:52) I generally recommend not going for “easy as possible” at the cost of shallow value. Instead, you’re going to want to design for some “mid-level” ability, understanding that this may make early user experiences with the product more difficult. Why? Oversimplification can mislead because data is complex, problems are multivariate, and data isn't always ideal. There are also “n” number of “not-first” impressions users will have with your product. This also means there is only one “first impression” they have. As such, the idea conceptually is to design an amazing experience for the “n” experiences, but not to the point that users never realize value and give up on the product.  While I'd prefer no friction, technical products sometimes will have to have a little friction up front however, don't use this as an excuse for poor design. This is hard to get right, even when you have design resources, and it’s why UX design matters as thinking this through ends up determining, in part, whether users obtain the promise of value you made to them. (14:21) As an alternative to rigid role and feature-based permissions in B2B data products, you might consider leveraging AI and / or LLMs in your UI as a means of simplif
Show more...
3 months ago
49 minutes 4 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge
Are you prepared for the hidden UX taxes that AI and LLM features might be imposing on your B2B customers—without your knowledge? Are you certain that your AI product or features are truly delivering value, or are there unseen taxes that are working against your users and your product / business? In this episode, I’m delving into some of UX challenges that I think need to be addressed when implementing LLM and AI features into B2B products.   While AI seems to offer the change for significantly enhanced productivity, it also introduces a new layer of complexity for UX design. This complexity is not limited to the challenges of designing in a probabilistic medium (i.e. ML/AI), but also in being able to define what “quality” means. When the product team does not have a shared understanding of what a measurably better UX outcome means, improved sales and user adoption are less likely to follow.    I’ll also discuss aspects of designing for AI that may be invisible on the surface. How might AI-powered products change the work of B2B users? What are some of the traps I see some startup clients and founders I advise in MIT’s Sandbox venture fund fall into?   If you’re a product leader in B2B / enterprise software and want to make sure your AI capabilities don’t end up creating more damage than value for users,  this episode will help!     Highlights/ Skip to    Improving your AI model accuracy improves outputs—but customers only care about outcomes (4:02) AI-driven productivity gains also put the customer’s “next problem” into their face sooner. Are you addressing the most urgent problem they now have—or used to have? (7:35) Products that win will combine AI with tastefully designed deterministic-software—because doing everything for everyone well is impossible and most models alone aren’t products (12:55) Just because your AI app or LLM feature can do ”X” doesn't mean people will want it or change their behavior (16:26) AI Agents sound great—but there is a human UX too, and it must enable trust and intervention at the right times (22:14) Not overheard from customers: “I would buy this/use this if it had AI” (26:52) Adaptive UIs sound like they’ll solve everything—but to reduce friction, they need to adapt to the person, not just the format of model outputs (30:20) Introducing AI introduces more states and scenarios that your product may need to support that may not be obvious right away (37:56)   Quotes from Today’s Episode Product leaders have to decide how much effort and resources you should put into model improvements versus improving a user’s experience. Obviously, model quality is important in certain contexts and regulated industries, but when GenAI errors and confabulations are lower risk to the user (i.e. they create minor friction or inconveniences), the broader user experience that you facilitate might be what is actually determining the true value of your AI features or product. Model accuracy alone is not going to necessarily lead to happier users or increased adoption. ML models can be quantifiably tested for accuracy with structured tests, but because they’re easier to test for quality vs. something like UX doesn’t mean users value these improvements more. The product will stand a better chance of creating business value when it is clearly demonstrating it is improving your users’ lives. (5:25) When designing AI agents, there is still a human UX - a beneficiary - in the loop. They have an experience, whether you designed it with intention or not. How much transparency needs to be given to users when an agent does work for them? Should users be able to intervene when the AI is doing this type of work?  Handling errors is something we do in all software, but what about retraining and learning so that the future user experiences is better? Is the system learning anything while it’s going through this—and can I tell if it’s learning what I want/need it to learn? What about humans in the loop who might inte
Show more...
3 months ago
45 minutes 25 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function
I keep hearing data product, data strategy, and UX teams often struggle to quantify the value of their work. Whether it’s as a team as a whole or on a specific data product initiative, the underlying problem is the same – your contribution is indirect, so it’s harder to measure. Even worse, your stakeholders want to know if your work is creating an impact and value, but because you can’t easily put numbers on it, valuation spirals into a messy problem.   The messy part of this valuation problem is what today’s episode is all about—not math! Value is largely subjective, not objective, and I think this is partly why analytical teams may struggle with this. To improve at how you estimate the value of your data products, you need to leverage other skills—and stop approaching this as a math problem.   As a consulting product designer, estimating value when it’s indirect is something that I’ve dealt with my entire career. It’s not a skill learned overnight, and it’s one you will need to keep developing over time—but the basic concepts are simple. I hope you’ll find some value in applying these along with your other frameworks and tools.    Highlights/ Skip to   Value is subjective, not objective (5:01) Measurability does not necessarily mean valuable (6:36) Businesses are made up of humans. Most b2b stakeholders aren’t spending their own money when making business decisions—what does that mean for your work? (9:30) Quantifying a data product’s value starts with understanding what is worth measuring in the eye of the beholder(s)—not math calculations (13:44) The more difficult it is to show the value of your product (or team) in numbers, the lower that value is to the stakeholder—initially (16:46) By simply helping a stakeholder to think through how value should be calculated on a data product, you’re likely already providing additional value (18:02) Focus on expressing estimated value via a range versus a single number (19:36) Measurement of anything requires that we can observe the phenomenon first—but many stakeholders won’t be able to cite these phenomena without [your!] help (22:16) When you are measuring quantitative aspects of value, remember that measurement is not the same as accuracy (precision)—and the precision game can become a trap (25:37) How to measure anything—and why estimates often trump accuracy (31:19) Why you may need to steer the conversation away from ROI calculations in the short term (35:00)   Quotes from Today’s Episode Even when you can easily assign a dollar value to the data product you’re building, that does not necessarily reflect what your stakeholder actually feels about it—or your team’s contribution. So, why do they keep asking you to quantify the value of your work? By actually understanding what a shareholder needs to observe for them to know progress has been made on their initiative or data product, you will be positioned to deliver results they actually care about. While most of the time, you should be able to show some obvious economic value in the work you’re doing, you may be getting hounded about this because you’re not meeting the often unstated qualitative goals. If you can surface the qualitative goals of your stakeholder, then the perception of the value of your team and its work goes up, and you’ll spend less time trying to measure an indirect contribution in quant terms that only has a subjectively right answer. (6:50) The more difficult it is for you to show the monetary value of your data product (or team), the lower that value likely is to the stakeholder. This does not mean the value of your work is “low.” It means it’s perceived as low because it cannot be easily quantified in a way that is observable to the person whose judgment matters. By understanding the personal motivations and interests of your stakeholders, you can begin to collaboratively figure out what the correct success metrics should be—and how they’d be measured. By just simply beginning to ask and
Show more...
4 months ago
41 minutes 41 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
162 - Beyond UI: Designing User Experiences for LLM and GenAI-Based Products
I’m doing things a bit differently for this episode of Experiencing Data. For the first time on the show, I’m hosting a panel discussion. I’m joined by Thomas Reuters’s Simon Landry, Sumo Logic’s Greg Nudelman, and Google’s Paz Perez to chat about how we design user experiences that improve people’s lives and create business impact when we expose LLM capabilities to our users.    With the rise of AI, there are a lot of opportunities for innovation, but there are also many challenges—and frankly, my feeling is that a lot of these capabilities right now are making things worse for users, not better. We’re looking at a range of topics such as the pros and cons of AI-first thinking, collaboration between UX designers and ML engineers, and the necessity of diversifying design teams when integrating AI and LLMs into b2b products.    Highlights/ Skip to  Thoughts on how the current state of LLMs implementations and its impact on user experience (1:51)  The problems that can come with the "AI-first" design philosophy (7:58)  Should a company's design resources be spent on go toward AI development? (17:20) How designers can navigate "fuzzy experiences” (21:28) Why you need to narrow and clearly define the problems you’re trying to solve when building LLMs products (27:35) Why diversity matters in your design and research teams when building LLMs (31:56)  Where you can find more from Paz, Greg, and Simon (40:43)   Quotes from Today’s Episode “ [AI] will connect the dots. It will argue pro, it will argue against, it will create evidence supporting and refuting, so it’s really up to us to kind of drive this. If we understand the capabilities, then it is an almost limitless field of possibility. And these things are taught, and it’s a fundamentally different approach to how we build user interfaces. They’re no longer completely deterministic. They’re also extremely personalized to the point where it’s ridiculous.” - Greg Nudelman (12:47) “ To put an LLM into a product means that there’s a non-zero chance your user is going to have a [negative] experience and no longer be your customer. That is a giant reputational risk, and there’s also a financial cost associated with running these models. I think we need to take more of a service design lens when it comes to [designing our products with AI] and ask what is the thing somebody wants to do… not on my website, but in their lives? What brings them to my [product]? How can I imagine a different world that leverages these capabilities to help them do their job? Because what [designers] are competing against is [a customer workflow] that probably worked well enough.” - Simon Landry (15:41) “ When we go general availability (GA) with a product, that traditionally means [designers] have done all the research, got everything perfect, and it’s all great, right? Today, GA is a starting gun. We don’t know [if the product is working] unless we [seek out user feedback]. A massive research method is needed. [We need qualitative research] like sitting down with the customer and watching them use the product to really understand what is happening[…] but you also need to collect data. What are they typing in? What are they getting back? Is somebody who’s typing in this type of question always having a short interaction? Let’s dig into it with rapid, iterative testing and evaluation, so that we can update our model and then move forward. Launching a product these days means the starting guns have been fired. Put the research to work to figure out the next step.” - (23:29) Greg Nudelman “ I think that having diversity on your design team (i.e. gender, level of experience, etc.) is critical. We’ve already seen some terrible outcomes. Multiple examples where an LLM is crafting horrendous emails, introductions, and so on. This is exactly why UXers need to get involved [with building LLMs]. This is why diversity in UX and on your tech team that deals with AI is so valuable. Number one piece of advi
Show more...
4 months ago
42 minutes 7 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
161 - Designing and Selling Enterprise AI Products [Worth Paying For]
With GenAI and LLMs comes great potential to delight and damage customer relationships—both during the sale, and in the UI/UX. However, are B2B AI product teams actually producing real outcomes, on the business side and the UX side, such that customers find these products easy to buy, trustworthy and indispensable?    What is changing with customer problems as a result of LLM and GenAI technologies becoming more readily available to implement into B2B software? Anything?   Is your current product or feature development being driven by the fact you might be able to now solve it with AI? The “AI-first” team sounds like it’s cutting edge, but is that really determining what a customer will actually buy from you?    Today I want to talk to you about the interplay of GenAI, customer trust (both user and buyer trust), and the role of UX in products using probabilistic technology.     These thoughts are based on my own perceptions as a “user” of AI “solutions,” (quotes intentional!), conversations with prospects and clients at my company (Designing for Analytics), as well as the bright minds I mentor over at the MIT Sandbox innovation fund. I also wrote an article about this subject if you’d rather read an abridged version of my thoughts.   Highlights/ Skip to: AI and LLM-Powered Products Do Not Turn Customer Problems into “Now” and “Expensive” Problems (4:03) Trust and Transparency in the Sale and the Product UX: Handling LLM Hallucinations (Confabulations) and Designing for Model Interpretability (9:44) Selling AI Products to Customers Who Aren’t Users (13:28) How LLM Hallucinations and Model Interpretability Impact User Trust of Your Product (16:10) Probabilistic UIs and LLMs Don’t Negate the Need to Design for Outcomes (22:48) How AI Changes (or Doesn’t) Our Benchmark Use Cases and UX Outcomes (28:41) Closing Thoughts (32:36)   Quotes from Today’s Episode “Putting AI or GenAI into a product does not change the urgency or the depth of a particular customer problem; it just changes the solution space. Technology shifts in the last ten years have enabled founders to come up with all sorts of novel ways to leverage traditional machine learning, symbolic AI, and LLMs to create new products and disrupt established products; however, it would be foolish to ignore these developments as a product leader. All this technology does is change the possible solutions you can create. It does not change your customer situation, problem, or pain, either in the depth, or severity, or frequency. In fact, it might actually cause some new problems. I feel like most teams spend a lot more time living in the solution space than they do in the problem space. Fall in love with the problem and love that problem regardless of how the solution space may continue to change.” (4:51) “Narrowly targeted, specialized AI products are going to beat solutions trying to solve problems for multiple buyers and customers. If you’re building a narrow, specific product for a narrow, specific audience, one of the things you have on your side is a solution focused on a specific domain used by people who have specific domain experience. You may not need a trillion-parameter LLM to provide significant value to your customer. AI products that have a more specific focus and address a very narrow ICP I believe are more likely to succeed than those trying to serve too many use cases—especially when GenAI is being leveraged to deliver the value. I think this can be true even for platform products as well. Narrowing the audience you want to serve also narrows the scope of the product, which in turn should increase the value that you bring to that audience—in part because you probably will have fewer trust, usability, and utility problems resulting from trying to leverage a model for a wide range of use cases.” (17:18) “Probabilistic UIs and LLMs are going to create big problems for product teams, particularly if they lack a set of guiding benchmark use cases. I talk
Show more...
5 months ago
34 minutes

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke
Today, I’m chatting with Adam Berke, the Chief Product Officer at The Predictive Index. For 70 years, The Predictive Index has helped customers hire the right employees, and after the merger with Charma, their products now nurture the employee/manager relationship. This is something right up Adam’s alley, as he previously helped co-found the employee and workflow performance management software company Charma before both aforementioned organizations merged back in 2023.   You’ll hear Adam talk about the first-time challenges (and successes) that come with integrating two products and two product teams, and why squashing out any ambiguity with overindexing (i.e. coming prepared with new org charts ASAP) is essential during the process.    Integrating behavioral science into the world of data is what has allowed The Predictive Index to thrive since the 1950s. While this is the company’s main selling point, Adam explains how the science-forward approach can still create some disagreements–and learning opportunities–with The Predictive Index’s legacy customers. Highlights/ Skip to: What is The Predictive Index and how does the product team conduct their work (1:24)  Why Charma merged with The Predictive Index (5:11)  The challenges Adam has faced as a CPO since the Charma/Predictive Index merger (9:21) How Predictive Index has utilized behavioral science to remove the guesswork of hiring (14:22) The makeup of the product team that designs and delivers The Predictive Index's products (20:24)  Navigating the clashes between changing science and Predictive Index's legacy customers (22:37)  How The Predictive Index analyzes the quality of their products with multiple user data metrics (27:21) What Adam would do differently if had to redo the merger (37:52)  Where you can find more from Adam and The Predictive Index (41:22)   Quotes from Today’s Episode “ Acquisitions are complicated. Outside of a few select companies, there are very few that have mergers and acquisitions as a repeatable discipline. More often than not, neither [company in the merger] has an established playbook for how to do this. You’re [acquiring a company] because of its product, team, or maybe even one feature. You have different theories on how the integration might look, but experiencing it firsthand is a whole different thing.  My initial role didn’t exist in [The Predictive Index] before. The rest of the whole PI organization knows how to get their work done before this, and now there’s this new executive. There’s just tons of [questions and confusion] if you don’t go in assuming good faith and be willing to work through the bumps. It’s going to get messy.” - Adam Berke (9:41) “We integrated the teams and relaunched the product. Charma became [a part of the product called] PI Perform, and right away there was re-skinning, redesign, and some back-end architecture that needed to happen to make it its own module. From a product perspective, we’re trying to deliver [Charma’s] unique value prop. That’s when we can start [figuring out how to] infuse PI’s behavioral science into these workflows. We have this foundation. We got the thing organized. We got the teams organized. We were 12 people when we were acquired… and here we are a year later. 150+ new customers have been added to PI Perform because it’s accelerating now that we’re figuring out the product.” - Adam Berke (12:18) “Our product team has the roles that you would expect: a PM, researcher, ux design, and then one atypical role–a PhD behavioral scientist. [Our product already had] suggested topics and templates [for manager/IC one-on-one meetings], but now we want to make those templates and suggested topics more dynamic. There might be different questions to draw out a better discussion, and our behavioral scientists help us determine [those questions]... [Our behavioral scientists] look at the science, other research, and calibrate [the one-on-one questions] before we implement them into t
Show more...
5 months ago
42 minutes 10 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail
Today, I’m talking to Andy Sutton, GM of Data and AI at Endeavour Group, Australia's largest liquor and hospitality company. In this episode, Andy—who is also a member of the Data Product Leadership Community (DPLC)—shares his journey from traditional, functional analytics to a product-led approach that drives their mission to leverage data and personalization to build the “Spotify for wines.” This shift has greatly transformed how Endeavour’s digital and data teams work together, and Andy explains how their advanced analytics work has paid off in terms of the company’s value and profitability.     You’ll learn about the often overlooked importance of relationships in a data-driven world, and how Andy sees the importance of understanding how users do their job in the wild (with and without your product(s) in hand). Earlier this year, Andy also gave the DPLC community a deeper look at how they brew data products at EDG, and that recording is available to our members in the archive.   We covered: What it was like at EDG before Andy started adopting a producty approach to data products and how things have now changed (1:52) The moment that caused Andy to change how his team was building analytics solutions (3:42) The amount of financial value that Andy's increased with his scaling team as a result of their data product work (5:19) How Andy and Endeavour use personalization to help build “the Spotify of wine” (9:15) What the team under Andy required in order to make the transition to being product-led (10:27) The successes seen by Endeavour through the digital and data teams’ working relationship (14:04) What data product management looks like for Andy’s team (18:45) How Andy and his team find solutions to  bridging the adoption gap (20:53) The importance of exposure time to end users for the adoption of a data product (23:43) How talking to the pub staff at EDG’s bars and restaurants helps his team build better data products (27:04) What Andy loves about working for Endeavour Group (32:25) What Andy would change if he could rewind back to 2022 and do it all over (34:55) Final thoughts (38:25)     Quotes from Today’s Episode “I think the biggest thing is the value we unlock in terms of incremental dollars, right? I’ve not worked in analytics team before where we’ve been able to deliver a measurable value…. So, we’re actually—in theory—we’re becoming a profit center for the organization, not just a cost center. And so, there’s kind of one key metric. The second one, we do measure the voice of the team and how engaged our team are, and that’s on an upward trend since we moved to the new operating model, too. We also measure [a type of] “voice of partner” score [and] get something like a 4.1 out of 5 on that scale. Those are probably the three biggest ones: we’re putting value in, and we’re delivering products, I guess, our internal team wants to use, and we are building an enthused team at the same time.” - Andy Sutton (16:18) “ You can put an [unfinished] product in front of an end customer, and they will give you quality feedback that you can then iterate on quickly. You can do that with an internal team, but you’ll lose credibility. Internal teams hold their analytics colleagues to a higher standard than the external customers. We’re trying to change how people do their roles. People feel very passionate about the roles they do, and how they do them, and what they bring to that role. We’re trying to build some of that into products. It requires probably more design consideration than I’d anticipated, and we’re still bringing in more designers to help us move closer to the start line.’” - Andy Sutton (19:25) “ [Customer research] is becoming critical in terms of the products we’re building. You’re building a product, a set of products, or a process for an operations team. In our context, an operations team can mean a team of people who run a pub. It’s not just about convincing me, my product managers, or my data sc
Show more...
6 months ago
40 minutes 47 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective
After getting started in construction management, Anna Jacobson traded in the hard hat for the world of data products and operations at a VC company. Anna, who has a structural engineering undergrad and a masters in data science, is also a Founding Member of the Data Product Leadership Community (DPLC). However, her work with data products is more “accidental” and is just part of her responsibility at Operator Collective. Nonetheless, Anna had a lot to share about building data products, dashboards, and insights for users—including resistant ones!      That resistance is precisely what I wanted to talk to her about in this episode: how does Anna get somebody to adopt a data product to which they may be apathetic, if not completely resistant?     At the end of the episode, Anna gives us a sneak peek at what she’s planning to talk about in our final 2024 live DPLC group discussion coming up on 12/18/2024.     We covered: (1:17) Anna's background and how she got involved with data products (3:32) The ways Anna applied her experiences working in construction management to her current work with data products at a VC firm (5:32) Explaining one of the main data products she works on at Operator Collective (9:55) How Anna defines success for her data products (15:21) The process of designing data products for "non-believers" (21:08) How to think about "super users" and their feedback on a data product (27:11) How a company's cultural problems can be a blocker for product adoption (38:21) A preview of what you can expect from Anna's talk and live group discussion in the DPLC (40:24) Closing thoughts from Anna (42:54) Where you can find more from Anna     Quotes from Today’s Episode “People working with data products are always thinking about how to [gain user adoption of their product]... I can’t think of a single one where [all users] were immediately on board. There’s a lot to unpack in what it takes to get non-believers on board, and it’s something that none of us ever get any training on. You just learn through experience, and it’s not something that most people took a class on in college. All of the social science around what we do gets really passed over for all the technical stuff. It takes thinking through and understanding where different [users] are coming from, and [understanding] that my perspective alone is not enough to make it happen.” - Anna Jacobson (16:00) ​​“If you only bring together the super users and don’t try to get feedback from the average user, you are missing the perspective of the person who isn’t passionate about the product. A non-believer is someone who is just over capacity. They may be very hard-working, they may be very smart, but they just don’t have the bandwidth for new things. That’s something that has to be overcome when you’re putting a new product into place.” - Anna Jacobson (22:35) “If a company can’t find budget to support [a data product], that’s a cultural decision. It’s not a financial decision. They find the money for the things that they care about. Solving the technology challenge is pretty easy, but you have to have a company that’s motivated to do that. If you want to implement something new, be it a data product or any change in an organization, identifying the cultural barriers and figuring out how to bring [people in an organization] on board is the crux of it. The money and the technology can be found.” - Anna Jacobson (27:58) “I think people are actually very bad at explaining what they want, and asking people what they want is not helpful. If you ask people what they want to do, then I think you have a shot at being able to build a product that does [what they want]. The executive sponsors typically have a very different perspective on what the product [should be] than the users do. If all of your information is getting filtered through the executive sponsor, you’re probably not getting the full picture” - Anna Jacobson (31:45) “You want to define what the opport
Show more...
6 months ago
43 minutes 41 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D
R&D for materials-based products can be expensive, because improving a product’s materials takes a lot of experimentation that historically has been slow to execute. In traditional labs, you might change one variable, re-run your experiment, and see if the data shows improvements in your desired attributes (e.g. strength, shininess, texture/feel, power retention, temperature, stability, etc.). However, today, there is a way to leverage machine learning and AI to reduce the number of experiments a material scientist needs to run to gain the improvements they seek. Materials scientists spend a lot of time in the lab—away from a computer screen—so how do you design a desirable informatics SAAS that actually works, and fits into the workflow of these end users?         As the Chief Product Officer at MaterialsZone, Ori Yudilevich came on Experiencing Data with me to talk about this challenge and how his PM, UX, and data science teams work together to produce a SAAS product that makes the benefits of materials informatics so valuable that materials scientists depend on their solution to be time and cost-efficient with their R&D efforts.        We covered: (0:45) Explaining what Ori does at MaterialZone and who their product serves (2:28) How Ori and his team help make material science testing more efficient through their SAAS product (9:37) How they design a UX that can work across various scientific domains (14:08) How “doing product” at MaterialsZone matured over the past five years (17:01) Explaining the "Wizard of Oz" product development technique (21:09) The importance of integrating UX designers into the "Wizard of Oz" (23:52) The challenges MaterialZone faces when trying to get users to adopt to their product (32:42) Advice Ori would've given himself five years ago (33:53) Where you can find more from MaterialsZone and Ori     Quotes from Today’s Episode “The fascinating thing about materials science is that you have this variety of domains, but all of these things follow the same process. One of the problems [consumer goods companies] face is that they have to do lengthy testing of their products. This is something you can use machine learning to shorten. [Product research] is an iterative process that typically takes a long time. Using your data effectively and using machine learning to predict what can happen, what’s better to try out, and what will reduce costs can accelerate time to market.” - Ori Yudilevich (3:47) “The difference [in time spent testing a product] can be up to 70% [i.e. you can run 70% fewer experiments using ML.]  That [also] means 70% less resources you’re using. Under the ‘old system’ of trial and error, you were just trying out a lot of things. The human mind cannot process a large number of parameters at once, so [a materials scientist] would just start playing only with [one parameter at a time]. You’ll have many experiments where you just try to optimize [for] one parameter, but then you might have 20, 30, or 100 more [to test]. Using machine learning, you can change a lot of parameters at once. The model can learn what has the most effect, what has a positive effect, and what has a negative effect. The differences can be really huge.” - Ori Yudilevich (5:50) “Once you go deeper into a use case, you see that there are a lot of differences. The types of raw materials, the data structure, the quantity of data, etc. For example, with batteries, you have lots of data because you can test hundreds all at once. Whereas with something like ceramics, you don’t try so many [experiments]. You just can’t. It’s much slower. You can’t do so many [experiments] in parallel. You have much less data. Your models are different, and your data structure is different. But there’s also quite a lot of commonality because you’re storing the data. In the end, you have each domain, some raw materials, formulations, tests that you’re doing, and different statistical plots that are very common.” - Ori
Show more...
7 months ago
34 minutes 58 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman
Jeremy Forman joins us to open up about the hurdles– and successes that come with building data products for pharmaceutical companies. Although he’s new to Pfizer, Jeremy has years of experience leading data teams at organizations like Seagen and the Bill and Melinda Gates Foundation. He currently serves in a more specialized role in Pfizer’s R&D department, building AI and analytical data products for scientists and researchers. .     Jeremy gave us a good luck at his team makeup, and in particular, how his data product analysts and UX designers work with pharmaceutical scientists and domain experts to build data-driven solutions..  We talked a good deal about how and when UX design plays a role in Pfizer’s data products, including a GenAI-based application they recently launched internally.       Highlights/ Skip to: (1:26) Jeremy's background in analytics and transition into working for Pfizer (2:42) Building an effective AI analytics and data team for pharma R&D (5:20) How Pfizer finds data products managers (8:03) Jeremy's philosophy behind building data products and how he adapts it to Pfizer (12:32) The moment Jeremy heard a Pfizer end-user use product management research language and why it mattered (13:55) How Jeremy's technical team members work with UX designers (18:00) The challenges that come with producing data products in the medical field (23:02) How to justify spending the budget on UX design for data products (24:59) The results we've seen having UX design work on AI / GenAI products (25:53) What Jeremy learned at the  Bill & Melinda Gates Foundation with regards to UX and its impact on him now (28:22) Managing the "rough dance" between data science and UX (33:22) Breaking down Jeremy's GenAI application demo from CDIOQ (36:02) What would Jeremy prioritize right now if his team got additional funding (38:48) Advice Jeremy would have given himself 10 years ago (40:46) Where you can find more from Jeremy     Quotes from Today’s Episode “We have stream-aligned squads focused on specific areas such as regulatory, safety and quality, or oncology research. That’s so we can create functional career pathing and limit context switching and fragmentation. They can become experts in their particular area and build a culture within that small team. It’s difficult to build good [pharma] data products. You need to understand the domain you’re supporting. You can’t take somebody with a financial background and put them in an Omics situation. It just doesn’t work. And we have a lot of the scars, and the failures to prove that.” - Jeremy Forman (4:12) “You have to have the product mindset to deliver the value and the promise of AI data analytics. I think small, independent, autonomous, empowered squads with a product leader is the only way that you can iterate fast enough with [pharma data products].” - Jeremy Forman (8:46) “The biggest challenge is when we say data products. It means a lot of different things to a lot of different people, and it’s difficult to articulate what a data product is. Is it a view in a database? Is it a table? Is it a query? We’re all talking about it in different terms, and nobody’s actually delivering data products.” - Jeremy Forman (10:53) “I think when we’re talking about [data products] there’s some type of data asset that has value to an end-user, versus a report or an algorithm. I think it’s even hard for UX people to really understand how to think about an actual data product. I think it’s hard for people to conceptualize, how do we do design around that? It’s one of the areas I think I’ve seen the biggest challenges, and I think some of the areas we’ve learned the most. If you build a data product, it’s not accurate, and people are getting results that are incomplete… people will abandon it quickly.” - Jeremy Forman (15:56) “ I think that UX design and AI development or data science work is a magical partnership, but they often don’t know how to work with each ot
Show more...
7 months ago
41 minutes 37 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
155 - Understanding Human Engagement Risk When Designing AI and GenAI User Experiences
The relationship between AI and ethics is both developing and delicate. On one hand, the GenAI advancements to date are impressive. On the other, extreme care needs to be taken as this tech continues to quickly become more commonplace in our lives. In today’s episode, Ovetta Sampson and I examine the crossroads ahead for designing AI and GenAI user experiences.     While professionals and the general public are eager to embrace new products, recent breakthroughs, etc.; we still need to have some guard rails in place. If we don’t, data can easily get mishandled, and people could get hurt. Ovetta possesses firsthand experience working on these issues as they sprout up. We look at who should be on a team designing an AI UX, exploring the risks associated with GenAI, ethics, and need to be thinking about going forward.     Highlights/ Skip to: (1:48) Ovetta's background and what she brings to Google’s Core ML group (6:03) How Ovetta and her team work with data scientists and engineers deep in the stack (9:09)  How AI is changing the front-end of applications (12:46) The type of people you should seek out to design your AI and LLM UXs (16:15) Explaining why we’re only at the very start of major GenAI breakthroughs (22:34) How GenAI tools will alter the roles and responsibilities of designers, developers, and product teams (31:11) The potential harms of carelessly deploying GenAI technology (42:09) Defining acceptable levels of risk when using GenAI in real-world applications (53:16) Closing thoughts from Ovetta and where you can find her     Quotes from Today’s Episode “If artificial intelligence is just another technology, why would we build entire policies and frameworks around it? The reason why we do that is because we realize there are some real thorny ethical issues [surrounding AI]. Who owns that data? Where does it come from? Data is created by people, and all people create data. That’s why companies have strong legal, compliance, and regulatory policies around [AI], how it’s built, and how it engages with people. Think about having a toddler and then training the toddler on everything in the Library of Congress and on the internet. Do you release that toddler into the world without guardrails? Probably not.” - Ovetta Sampson (10:03) “[When building a team] you should look for a diverse thinker who focuses on the limitations of this technology- not its capability. You need someone who understands that the end destination of that technology is an engagement with a human being.  You need somebody who understands how they engage with machines and digital products. You need that person to be passionate about testing various ways that relationships can evolve. When we go from execution on code to machine learning, we make a shift from [human] agency to a shared-agency relationship. The user and machine both have decision-making power. That’s the paradigm shift that [designers] need to understand. You want somebody who can keep that duality in their head as they’re testing product design.” - Ovetta Sampson (13:45) “We’re in for a huge taxonomy change. There are words that mean very specific definitions today. Software engineer. Designer. Technically skilled. Digital. Art. Craft. AI is changing all that. It’s changing what it means to be a software engineer. Machine learning used to be the purview of data scientists only, but with GenAI, all of that is baked in to Gemini. So, now you start at a checkpoint, and you’re like, all right, let’s go make an API, right? So, the skills, the understanding, the knowledge, the taxonomy even, how we talk about these things, how do we talk about the machine who speaks to us talks to us, who could create a podcast out of just voice memos?” - Ovetta Sampson (24:16) “We have to be very intentional [when building AI tools], and that’s the kind of folks you want on teams. [Designers] have to go and play scary scenarios. We have to do that. No designer wants to be “Negative Nancy,” but th
Show more...
7 months ago
55 minutes 33 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design
Sometimes DIY UI/UX design only gets you so far—and you know it’s time for outside help. One thing prospects from SAAS analytics and data-related product companies often ask me is how things are like in the other guy/gal’s backyard. They want to compare their situation to others like them. So, today, I want to share some of the common “themes” I see that usually are the root causes of what leads to a phone call with me.      By the time I am on the phone with most prospects who already have a product in market, they’re usually either having significant problems with 1 or more of the following: sales friction (product value is opaque); low adoption/renewal worries (user apathy), customer complaints about UI/UX being hard to use; velocity (team is doing tons of work, but leader isn’t seeing progress)—and the like.      I’m hoping today’s episode will explain some of the root causes that may lead to these issues — so you can avoid them in your data product building work!       Highlights/ Skip to: (10:47) Design != "front-end development" or analyst work (12:34)  Liking doing UI/UX/viz design work vs. knowing  (15:04)  When a leader sees lots of work being done, but the UX/design isn’t progressing (17:31) Your product’s UX needs to convey some magic IP/special sauce…but it isn’t (20:25) Understanding the tradeoffs of using libraries, templates, and other solution’s design as a foundation for your own  (25:28) The sunk cost bias associated with POCs and “we’ll iterate on it” (28:31) Relying on UI/UX "customization" to please all customers (31:26) The hidden costs of abstraction of system objects, UI components, etc.  to make life easier for engineering and technical teams (32:32) Believing you’ll know the design is good “when you see it” (and what you don’t know you don’t know) (36:43) Believing that because the data science/AI/ML modeling under your solution was, accurate, difficult, and/or expensive makes it automatically worth paying for      Quotes from Today’s Episode The challenge is often not knowing what you don’t know about a project. We often end up focusing on building the tech [and rushing it out] so we can get some feedback on it… but product is not about getting it out there so we can get feedback. The goal of doing product well is to produce value, benefits, or outcomes. Learning is important, but that’s not what the objective is. The objective is benefits creation. (5:47) When we start doing design on a project that’s not design actionable, we build debt and sometimes can hurt the process of design. If you start designing your product with an entire green space, no direction, and no constraints, the chance of you shipping a good v1 is small. Your product strategy needs to be design-actionable for the team to properly execute against it. (19:19) While you don’t need to always start at zero with your UI/UX design, what are the parts of your product or application that do make sense to borrow , “steal” and cheat from? And when does it not?  It takes skill to know when you should be breaking the rules or conventions. Shortcuts often don’t produce outsized results—unless you know what a good shortcut looks like.  (22:28) A proof of concept is not a minimum valuable product. There’s a difference between proving the tech can work and making it into a product that’s so valuable, someone would exchange money for it because it’s so useful to them. Whatever that value is, these are two different things. (26:40) Trying to do a little bit for everybody [through excessive customization] can often result in nobody understanding the value or utility of your solution. Customization can hide the fact the team has decided not to make difficult choices. If you’re coming into a crowded space… it’s like’y not going to be a compelling reason to [convince customers to switch to your solution]. Customization can be a tax, not a benefit. (29:26) Watch for the sunk cost bias [in product development]. [Buyers] don’t care how the s
Show more...
8 months ago
44 minutes 47 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats
In today’s episode, I’m joined by John Felushko, a product manager at LabStats who impressed me after we recently had a 1x1 call together. John and his team have developed a successful product that helps universities track and optimize their software and hardware usage so schools make smart investments. However, John also shares how culture and value are very tied together—and why their product isn’t a fit for every school, and every country. John shares how important  customer relationships are , how his team designs great analytics user experiences, how they do user research, and what he learned making high-end winter sports products that’s relevant to leading a SAAS analytics product. Combined with John’s background in history and the political economy of finance, John paints some very colorful stories about what they’re getting right—and how they’ve course corrected over the years at LabStats.      Highlights/ Skip to: (0:46) What is the LabStats product  (2:59) Orienting analytics around customer value instead of IT/data (5:51) "Producer of Persistently Profitable Product Process" (11:22) How they make product adjustments based on previous failures (15:55) Why a lack of cultural understanding caused LabStats to fail internationally (18:43) Quantifying value beyond dollars and cents (25:23) How John is able to work so closely with his customers without barriers (30:24) Who makes up the LabStats product research team (35:04) ​​How strong customer relationships help inform the UX design process (38:29) Getting senior management to accept that you can't regularly and accurately predict when you’ll be feature-complete and ship (43:51) Where John learned his skills as a successful product manager (47:20) Where you can go to cultivate the non-technical skills to help you become a better SAAS analytics product leader (51:00) What advice would John Felushko have given himself 10 years ago? (56:19) Where you can find more from John Felushko   Quotes from Today’s Episode “The product process is [essentially] really nothing more than the scientific method applied to business. Every product is an experiment - it has a hypothesis about a problem it solves. At LabStats [we have a process] where we go out and clearly articulate the problem. We clearly identify who the customers are, and who are [people at other colleges] having that problem. Incrementally and as inexpensively as possible, [we] test our solutions against those specific customers. The success rate [of testing solutions by cross-referencing with other customers] has been extremely high.” - John Felushko (6:46) “One of the failures I see in Americans is that we don’t realize how much culture matters. Americans have this bias to believe that whatever is valuable in my culture is valuable in other cultures. Value is entirely culturally determined and subjective. Value isn’t a number on a spreadsheet. [LabStats positioned our producty] as something that helps you save money and be financially efficient. In French government culture, financial efficiency is not a top priority. Spending government money on things like education is seen as a positive good. The more money you can spend on it, the better.  So, the whole message of financial efficiency wasn’t going to work in that market.” - John Felushko (16:35) “What I’m really selling with data products is confidence. I’m selling assurance. I’m selling an emotion. Before I was a product manager, I spent about ten years in outdoor retail, selling backpacks and boots. What I learned from that is you’re always selling emotion, at every level. If you can articulate the ROI, the real value is that the buyer has confidence they bought the right thing.” - John Felushko (20:29) “[LabStats] has three massive, multi-million dollar horror stories in our past where we [spent] millions of dollars in development work for no results. No ROI. Horror stories are what shape people’s values more than anything else. Avoiding negative outc
Show more...
8 months ago
57 minutes 31 seconds

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product
In today’s episode, I’m going to perhaps work myself out of some consulting engagements, but hey, that’s ok! True consulting is about service—not PPT decks with strategies and tiers of people attached to rate cards. Specifically today, I decided to reframe a topic and approach it from the opposite/negative side. So, instead of telling you when the right time is to get UX design help for your enterprise SAAS analytics or AI product(s), today I’m going to tell you when you should NOT get help!    Reframing this was really fun and made me think a lot as I recorded the episode. Some of these reasons aren’t necessarily representative of what I believe, but rather what I’ve heard from clients and prospects over 25 years—what they believe. For each of these, I’m also giving a counterargument, so hopefully, you get both sides of the coin.    Finally, analytical thinkers, especially data product managers it seems, often want to quantify all forms of value they produce in hard monetary units—and so in this episode, I’m also going to talk about other forms of value that products can create that are worth paying for—and how mushy things like “feelings” might just come into play ;-)  Ready?     Highlights/ Skip to: (1:52) Going for short, easy wins (4:29) When you think you have good design sense/taste  (7:09) The impending changes coming with GenAI (11:27) Concerns about "dumbing down" or oversimplifying technical analytics solutions that need to be powerful and flexible (15:36) Agile and process FTW? (18:59) UX design for and with platform products (21:14) The risk of involving designers who don’t understand data, analytics, AI, or your complex domain considerations  (30:09) Designing after the ML models have been trained—and it’s too late to go back  (34:59) Not tapping professional design help when your user base is small , and you have routine access and exposure to them   (40:01) Explaining the value of UX design investments to your stakeholders when you don’t 100% control the budget or decisions    Quotes from Today’s Episode “It is true that most impactful design often creates more product and engineering work because humans are messy. While there sometimes are these magic, small GUI-type changes that have big impact downstream, the big picture value of UX can be lost if you’re simply assigning low-level GUI improvement tasks and hoping to see a big product win. It always comes back to the game you’re playing inside your team: are you working to produce UX and business outcomes or shipping outputs on time? ” (3:18) “If you’re building something that needs to generate revenue, there has to be a sense of trust and belief in the solution. We’ve all seen the challenges of this with LLMs. [when] you’re unable to get it to respond in a way that makes you feel confident that it understood the query to begin with. And then you start to have all these questions about, ‘Is the answer not in there,’ or ‘Am I not prompting it correctly?’ If you think that most of this is just an technical data science problem, then don’t bother to invest in UX design work… ” (9:52) “Design is about, at a minimum, making it useful and usable, if not delightful. In order to do that, we need to understand the people that are going to use it. What would an improvement to this person’s life look like? Simplifying and dumbing things down is not always the answer. There are tools and solutions that need to be complex, flexible, and/or provide a lot of power – especially in an enterprise context. Working with a designer who solely insists on simplifying everything at all costs regardless of your stated business outcome goals is a red flag—and a reason not to invest in UX design—at least with them!“ (12:28)“I think what an analytics product manager [or] an AI product manager needs to accept is there are other ways to measure the value of UX design’s contribution to your product and to your organization. Let’s say that you have a mission-critical internal da
Show more...
9 months ago
53 minutes

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.