Tri Dao, Chief Scientist at Together AI and Princeton professor who created Flash Attention and Mamba, discusses how inference optimization has driven costs down 100x since ChatGPT's launch through memory optimization, sparsity advances, and hardware-software co-design. He predicts the AI hardware landscape will shift from Nvidia's current 90% dominance to a more diversified ecosystem within 2-3 years, as specialized chips emerge for distinct workload categories: low-latency agentic systems, high-throughput batch processing, and interactive chatbots. Dao shares his surprise at AI models becoming genuinely useful for expert-level work, making him 1.5x more productive at GPU kernel optimization through tools like Claude Code and O1. The conversation explores whether current transformer architectures can reach expert-level AI performance or if approaches like mixture of experts and state space models are necessary to achieve AGI at reasonable costs. Looking ahead, Dao sees another 10x cost reduction coming from continued hardware specialization, improved kernels, and architectural advances like ultra-sparse models, while emphasizing that the biggest challenge remains generating expert-level training data for domains lacking extensive internet coverage.
Show more...