It's no secret that the Universe and the objects present within it, as we see them all today, have changed over time as the Universe has grown up over the past 13.8 billion years. Galaxies are larger, more massive, more evolved, and are richer in stars but fewer in number than they were back in the early stages of cosmic history. By looking farther and farther away, we can see the Universe as it was at earlier times, but we're going to be limited in many ways: by how deep our telescopes can see, by what wavelengths they're capable of seeing, and by what small fraction of the sky they're capable of observing.
That's why an observing program like COSMOS-Web, the largest, widest-field JWST observing program to date, is so important. It isn't just revealing galaxies as they are nearby (at late times), at a variety of intermediate distances (and earlier times), and at ultra-large distances (and the earliest times of all), but due to its wide-field nature, is revealing galaxy types of varying abundances: the common-type galaxies, galaxies that are representative of more uncommon varieties, and even significant numbers of rare galaxies. And it's this aspect of galaxy evolution that makes me so proud and lucky to welcome Dr. Olivia Cooper to the podcast.
Olivia is a recently-minted PhD who works as part of the COSMOS-Web team, specializing in galaxy evolution and using JWST data — along with data from other world-class observatories — to investigate how the galaxies in our Universe grew up, and what that can teach us about our own cosmic past. It truly is a banger of an episode that you'll want to listen to every minute of, so tune in and dive deep into the depths of the distant Universe on our latest adventure of the Starts With A Bang podcast!
(This image shows a tiny sliver of the COSMOS-Web survey, with galaxies at a variety of distances along with a portion of a rich cluster of galaxies, at right, of this image. Credit: ESA/Webb, NASA & CSA, G. Gozaliasl, A. Koekemoer, M. Franco, and the COSMOS-Web team)
It's hard to believe, but it was only back in the early 1990s that we discovered the very first planet orbiting a star other than our own Sun. Fast forward to the present day, here in 2025, and we're closing in on 6000 confirmed exoplanets, found and measured through multiple techinques: the transit method, the stellar wobble method, and even direct imaging. That last one is so profoundly exciting because it gives us hope that, someday soon, we might be able to take direct images of Earth-like worlds, some of which may even be inhabited.
Although it may be a long time before we can get an exoplanet image as high-resolution as even the ultra-distant "pale blue dot" photo that Voyager took of Earth so many decades ago, the fact remains that science is advancing rapidly, and things that seemed impossible mere decades ago now reflect today's reality. And the people driving this fascinating field forward the most are the mostly unheralded workhorses of the fields of physics and astronomy: the early-career researchers, like grad students and postdocs, who are just beginning to establish themselves as scientists.
In this fascinating conversation with Dr. Kielan Hoch of Space Telescope Science Institute, we take a long walk at the current frontiers of science and peek over the horizon: looking at the good, the bad, and the ugly of what we're facing here in 2025. It's a conversation that might make you hopeful, angry, and optimistic all at the same time. After all, it's your Universe too; don't you want to know what comes next?
(This composite image shows a brown dwarf star, center, with the first directly imaged exoplanet, 2M1207 b, in red alongside it. This image was acquired in 2004 by the Very Large Telescope in Chile, operated by the European Southern Observatory. In the years and decades since, dozens of more exoplanets have been directly imaged, with hundreds more expected in the next decade. Credit: ESO/VLT.)
Out there in the Universe, somewhere, a second example of an inhabit world or planet likely awaits us. It could be some other planet or moon within our own Solar System; it could be a spacefaring, interstellar civilization, or it could be an exoplanet around a different parent star. Although the search for life beyond Earth generally focuses on worlds that have similar conditions to Earth, like rocky planets with thin atmospheres and liquid water on their surfaces, that's not necessarily the only possibility. The truth is that we don't know what else is going to be out there, not until we look for ourselves and determine the answers.
And yet, if you've been paying attention to the news, you might think that super-Earth or mini-Neptune type worlds, such as the now-famous exoplanet K2-18b, might be excellent candidate planets for life. Some have even gone as far as to claim that this planet has surefire biosignatures on it, and that the evidence overwhelmingly favors the presence of life within this planet's atmosphere. But the science backing up that claim has been challenged by many, including our two podcast guests for this episode: Dr. Luis Welbanks and Dr. Matthew Nixon.
Beyond the breathless and sensational claims, what does the actual science concerning K2-18b in particular, and of biosignatures on exoplanets in general, actually teach us? What does the evidence indicate, and if we are going to find inhabited exoplanets, what will it take for us to actually announce a positive detection with confidence and less ambiguity? That's what this episode of the Starts With A Bang podcast is all about; I hope you enjoy it!
(When an exoplanet passes in front of its parent star, a portion of that starlight will filter through the exoplanet’s atmosphere, allowing us to break up that light into its constituent wavelengths and to characterize the atomic and molecular composition of the atmosphere. If the planet is inhabited, we may reveal unique biosignatures, but if the planet has either a thick, gas-rich envelope of volatile material around it, or alternatively no atmosphere at all, the prospects for habitability will be very low. Credit: NASA Ames/JPL-Caltech)
Perhaps the strongest evidence we've ever acquired in support of the Big Bang has been the discovery of the leftover radiation from its early, hot, dense state: today's cosmic microwave background, or CMB. While there were many competing ideas for our cosmic origins, only the Big Bang predicted a uniform, omnidirectional bath of blackbody radiation: exactly what the CMB is.
But it turns out the CMB encodes much more information than just our cosmic origins; it allows us to map the very early Universe from when it was just 380,000 years old, and gives us vital information about what has happened to light from that time over its 13.8 billion year journey to our eyes. It encodes information about our cosmic expansion history, about dark matter and dark energy, about intervening galaxy clusters, and about the material here in our own galaxy, along with much more. It is, arguably, the richest source of information from any one single observable in our entire Universe.
Here to guide us through what CMB scientists are working on here in 2025, including what we've learned and what we're still trying to find out, I'm so pleased to welcome Dr. Patricio Gallardo to the show. We've got more than an hour and a half of quality science to go through, and by the end, I bet you'll be more excited about the upcoming Simons Observatory, designed to measure the CMB to higher precision than ever before, than you knew you should be. Enjoy!
(This image shows the Large Aperture Telescope's colossal, 6-meter primary and secondary mirrors at the Simons Observatory in February of 2025. The telescope has already seen first light, and will soon begin delivering new CMB science as never before. Credit: M. Devlin/Simons Observatory)
When we search for life in the Universe, it makes sense to look for planets that are similar to Earth. To most of us, those signatures would look the same as the ones we'd see if we viewed our planet today: blue oceans, green-and-brown continents, polar icecaps, wispy white clouds, an atmosphere dominated by nitrogen and oxygen, and even the modern signs of human activity, such as increasing greenhouse gas emissions, planet modification, and electromagnetic signatures that belie our presence.
But for most of our planet's history, Earth was just as "inhabited" as it is today, even though it looked very different. One fascinating period in Earth's history that lasted approximately 300 million years resulted in a planet that looked extremely different from modern Earth: a Snowball Earth period, where the entire surface, from the poles to the equator, was completely covered in snow and ice. This isn't just speculation, but is backed up by a remarkable, large suite of observational and geological evidence.
So what was Earth like during this period? How did it fall into this phase, how did it remain trapped in that state for so long, and how did it finally thaw again? To help explore this topic, I'm so pleased to welcome PhD candidate Alia Wofford to the program, who conducts intricate climate models of early Earth to try to reproduce those early conditions. From that work, we're learning about what we should be looking for when it comes to potentially inhabited exoplanets, because Earth has been inhabited for around 4 billion years, and wow, has its appearance changed over all that time. Have a listen and see for yourself!
(This illustration shows a frozen-over planet, but one that still possesses a significant liquid ocean beneath the surface ice. Many worlds in our Solar System may be described by this scenario at various points in cosmic history, including even planet Earth more than two billion years ago. Credit: Pablo Carlos Budassi/Wikimedia Commons)
It might seem hard to fathom, but it hasn't even been ten full years since advanced LIGO, the gravitational wave observatories that brought us our very first successful direct detection, turned on for the very first time. In the time since, it's been joined by the Virgo and KAGRA detectors, and humanity is currently closing in on 300 confirmed gravitational wave detection events. What was an unconfirmed prediction of Einstein's General Relativity for a full century has now become one of the fastest-growing fields in all of astronomy and astrophysics.
Here in 2025, we're now looking forward to the LISA era: where we're going to build our first gravitational wave detectors in space. They'll have far longer baselines (i.e., separations between the various spacecrafts/stations) than any terrestrial gravitational wave detector, enabling us to detect fundamentally different classes (and masses) of objects that emit gravitational waves. At the same time, the rise of artificial intelligence and machine learning is enabling us to detect and characterize ever greater numbers of gravitational wave events, an incredibly exciting development.
For this episode of the Starts With A Bang podcast, I'm so pleased to welcome Shaniya Jarrett to the program. She's here to guide us up to the frontiers and help us peer over the horizon, and is currently an astronomy PhD student at the University of Maryland after earning her Masters degree from the Fisk-Vanderbilt bridge program. Have a listen and learn all of the exciting science that's not only within our reach today, but that we all have to look forward to in the very near future!
(The image above shows an illustration of the three future LISA, or Laser Interferometer Space Antennae, spacecrafts, in a trailing orbit behind the Earth. LISA will be our first space-based gravitational wave detector, sensitive to objects thousands of times as massive than the ones LIGO can detect. Credit: University of Florida/NASA)
Out there in the Universe, each star represents an opportunity: a chance for a stellar system to develop that just might possess something remarkable. While we normally think about life, and intelligent life at that, as the grand prize the Universe has to offer, there are a wide variety of fascinating phenomena that are out there to consider. Whereas Mercury, for example, is the closest world to our Sun in our own Solar System, it still takes 88 days to make a complete revolution. In other systems, however, exoplanets can be so hot that they orbit their parent star in less than a single Earth day.
In fact, we've discovered a few systems that are so extreme, the planets that orbit them are in the process of disintegrating: where the heat, winds, and radiation from the parent star actually blows part of the planet itself away. This doesn't just include a planet's atmosphere, which is what we see for giant worlds, but even the surfaces and interiors of rocky planets in the most extreme cases. At temperatures of around 2000 degrees and upwards, these exoplanets can lose their crusts, mantles, and even their cores over long enough timescales.
Believe it or not, we've actually caught a few exoplanets doing exactly this, and we've got the JWST spectra in hand for one of them now, teaching us, for the first time, what a planetary interior is made of outside of our own Solar System. I'm so pleased to have the first author from that 2025 study, soon-to-be Dr. Nick Tusay, as our guest on this edition of the Starts With A Bang podcast, as we take a look at the most extreme exoplanetary systems ever discovered!
(This image shows an illustration of an evaporating, rocky exoplanet, with an enormous dust tail arising from the material blown off of the planet from its interaction with the nearby star. Credit: NASA/JPL-Caltech)
Sure, it's easy to look out at the Universe and take stock of what we find. Although spiral and elliptical galaxies house the majority of the Universe's stars, represented locally by galaxies like Andromeda and our own Milky Way, the overwhelming majority of galaxies are much smaller and lower in mass than we and our cousins are. These low-mass galaxies, the dwarf galaxies in the Universe, represent upwards of 97% of all the galaxies that exist.
However, while most of the dwarf galaxies we know of are found as satellites around larger, more massive galaxies, they aren't good laboratories for helping us understand the Universe as it was long ago. Back during the first few billion years of cosmic history, it wasn't just dwarf galaxies that formed the majority of starlight in the cosmos, but isolated dwarf galaxies: dwarf galaxies that hadn't yet interacted with larger neighbors.
We can best understand those early-stage galaxies by studying their late-time analogues: isolated dwarf galaxies in the Universe today. On this edition of the Starts With A Bang podcast, I sit down with Dr. Catherine (Cat) Fielder, and we talk about some of the nearest, most isolated galaxies of all: including some that have been imaged with flagship-quality telescopes. What have we learned about them so far, and what else are we hoping to discover? Find out here, today!
(This three panel image shows a ground-based, wide field view of the entirety of galaxy NGC 300: one of the closest spiral galaxies outside of our Local Group. Though this galaxy is relatively isolated, there are dwarf galaxies nearby it that are even more isolated than this galaxy itself, making them excellent objects to teach us how tiny galaxies grow up in isolation from large, major galaxies. Credit: ESA/Hubble and NASA)
Out there in the Universe, there are tremendous, uncountable numbers of planetary systems just waiting to be discovered. But stellar systems won't just consist of planets orbiting a parent star; there will be moons, asteroids, Kuiper belt-like objects, and many of them will be bound together into their own rich sets of systems, with both irregular and round bodies comprising these planetary systems.
Here in our own Solar System, we have at least three notable large, terrestrial-sized bodies with impressive lunar systems of their own: the Earth-Moon system, the Mars-Phobos-Deimos system, and the Plutonian planetary system. Pluto, interestingly, is orbited by Charon, which is very large and massive compared to Pluto, an unusual and possibly unique, or most extreme, configuration of all known such bodies. But how did it get to be that way? That's the topic of this podcast, and the research focus of this month's guest: Dr. Adeene Denton.
It's kind of amazing what variety can emerge in terms of surviving systems from ancient planetary collisions, but by running simulations and understanding the geology of these worlds, we can learn more about what's possible, likely, and unlikely in our Universe. Dive into this fascinating conversation and learn some cutting-edge science along the way!
(This composite image of Pluto and its largest moon, Charon, was based on photographs taken by the New Horizons mission as it flew by the Plutonian planetary system back in 2015. Charon's appearance is vastly different from Pluto's, but both bodies are shown with the correct relative size and albedo. Credit: NASA, APL, SwRI)
When it comes to stars, most of them, for most of their lives, behave in a very similar fashion to the Sun. In their cores, they undergo nuclear fusion, which provides energy and creates radiation, and that outward radiation pressure holds the star up, internally, against gravitational collapse. For most stars, this balance between the pressure from outward radiation and the inward force from gravitation is nearly perfect all throughout the star, leading to an equilibrium state.
But some stars aren't in this kind of equilibrium at all. Instead, some internal process actually drives the star in a fashion that causes it to pulsate: overshooting equilibrium in both directions, as it alternatingly expands and cools, and then contracts and heat up in a cyclical fashion. These species of intrinsic variable stars, including Cepheids and RR Lyrae stars, are not only of profound importance when it comes to understanding stellar evolution, but for unlocking the secrets of the distant Universe.
How do we understand these stars today, where are the frontiers, and what do we hope to learn about them in the coming years and decades? Especially as we transition into the era of "big data" in astronomy, where we aren't observing individual stars in detail but rather thousands upon thousands of similar stars all at once, the answers to these questions are rapidly changing. I'm so pleased to share the first episode of 2025 with you, featuring our guest, Ph.D. candidate Catherine Slaughter, who takes us through all this and more. It's a fascinating look into stellar physics, with possible implications for our own Sun's fate, that you won't want to miss!
(The featured image shows the star RR Lyrae, as imaged by the digitized sky survey back at the turn of the century, using data from the Palomar and UK Schmidt telescopes. Credit: Digitized Sky Survey - STScI/NASA)
When we look out at our home galaxy, the Milky Way, we have to recognize that even though it's been growing and evolving for 13.8 billion years, we're only observing it as it is right now: a snapshot in time determined by the light that's arriving in our instruments right now. However, just like we're living "right now" in human history but can, through the science of archaeology, learn about historical events that happened many thousands of years ago (before recorded history) or even earlier, we can learn about the Milky Way's history through the astronomical equivalent: galactic archaeology.
How do galactic archaeologists do it? They look at as much data as possible, across many wavelengths of light, including at many rare and obscure species of stars, in as many locations as possible and to the greatest precisions possible all at once. By combining these different lines of evidence, we can arrive at a coherent and compelling picture for how our little corner of the Universe grew up, including by reconstructing the merger history of the Milky Way.
Surprisingly, it isn't only the "big data" missions that are contributing to this understanding, but even smaller, less heralded (and more accessible) telescopes, with the right equipment and sets of observations, can make a huge impact. Join us for this episode, where astrophysicist and observatory director Elaina Hyde joins us, helping us better appreciate the wonders of our own cosmic past!
(This illustration of our Milky Way shows an ancient galactic stream wrapped around our galaxy's plane at nearly a 90 degree angle: evidence for a recent and even ongoing merger in our galaxy's history. Credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech))
In this Universe, there are a few objects that are just larger, and a few events that are just more powerful, than others. As far as size goes, the cosmic web creates some of the largest features ever discovered, with the largest galaxy filaments and the largest regions devoid of galaxies spanning as much as ~2 billion light-years. No robust, verified structure has ever been found that's larger. Meanwhile, as far as energy and power go, collisions of galaxy clusters are the most energetic events, outstripped only by the Big Bang itself.
However, nearly rivaling galaxy cluster collisions are the strongest black hole jets ever seen, capable of emitting trillions of times the energy of a Sun-like star, but also capable of sustaining those energies over timescales of a billion years or more. Astronomers have just set a new record for the longest black hole jet with the discovery of Porphyrion, which spans a whopping 24 million light-years across! How did this jet and others like it come to be, and what effects do they have on the larger Universe, and how do they get generated from such physically small objects (i.e., black holes) to begin with?
That's the subject of the latest edition of the Starts With A Bang podcast, featuring Dr. Martijn Oei: the discoverer of Porphyrion himself! We get deep into the physics and astrophysics of black holes and their jets, which have profound implications for how structures get carved and magnetized onto the scales of the cosmic web itself. Buckle up and tune in; it's a wild ride ahead!
(This illustration shows how black hole jets can be as large as the scale of the cosmic web itself, with Porphyrion, as illustrated here, setting a new cosmic record with its bipolar jets spanning 23-24 million light-years across. Credit: Erik Wernquist/Dylan Nelson (IllustrisTNG collaboration)/Martijn Oei; Design: Samuel Hermans)
It's hard to imagine, but it was only five years ago, in 2019, that humanity feasted our collective eyes on the first direct image of a black hole's event horizon. Thanks to the technique of very long baseline interferometry and the power of arrays of radio telescopes stitched together from all across the Earth, we were able to resolve the event horizon of the black hole M87*, despite the fact that it's an impressive 55 million light-years away.
That was with radio interferometry, but historically, most telescopes have used optical light, not radio light. Does that mean that optical interferometry is possible? Not only is the answer a resounding "yes," but we've been performing it for decades. In fact, the most ambitious optical interferometry project of all-time is already under construction in New Mexico: the Magdalena Ridge Observatory Interferometer (MROI). With an array that will feature a total of ten separate telescopes all linked together, and with a maximum tunable distance of 340 meters between them, it's poised to achieve higher-resolution imagery of a suite of astronomical objects than has ever been obtained before, from the ground or from in space.
There's so much mind-blowing science to learn that we had to bring two guests onto our podcast this month to explain it all: Dr. Michelle Creech-Eakman of New Mexico Tech and Dr. Chris Haniff of Cavendish Laboratory at Cambridge University. Be prepared for a fascinating look at the science of optical interferometry, what we'll be able to discover once MROI is complete, and an incredible tour of the instrumentation science that powers it. It's a fascinating episode you won't want to miss!
(The first two telescopes (of ten) that will eventually be part of the Magdalena Ridge Observatory Interferometer when its full array is complete. Credit: James Luis/MROI)
When you think of an active galaxy, what picture comes to mind? Do you think about a monstrous supermassive black hole feasting on tremendous stores of gas and other forms of matter? Do you picture an enormous disk of accreted matter, being accelerated, heated, and eventually shot out along two jets, each perpendicular to the disk itself? This common picture of active galaxies describes many of the most prominent ones, but isn't universal to them all.
Some active galaxies aren't giant ellipticals, but just average-looking spiral galaxies. Some galaxies aren't in the process of a major merger, but seem to be powered by their own internal gas. And some of these black holes aren't ridiculously massive, with billions of solar masses inherent to them, but are rather much more modest. Some of these active galaxies actually show practically no signs of activity in visible light, but must be viewed in other wavelengths, such as with radio telescopes, to reveal their activity.
Above, you can see galaxy NGC 3227, which may appear to be just a normal spiral galaxy. However, not only is it active, but it's actively in the process of launching a "cone" of energetic material from very close to the black hole itself. Here to help us untangle its mysteries and take us on a deep dive into the physics of these objects, I'm so pleased to welcome Julia Falcone to the podcast. Julia is a PhD candidate at Georgia State University, and her very first published first-author paper is about this exact system shown here. Come join us as we explore these fascinating objects and open a window onto the Universe we're still discovering!
(This image shows galaxy NGC 3227, at left, with its neighbor NGC 3226, as viewed in optical light by the Hubble Space Telescope. Despite copious features common to spiral galaxies, including rich dust lanes, a bright central bulge, and new stars forming along its spiral arms, this galaxy is actually active, with bright features emanating from the central supermassive black hole in non-optical wavelengths of light. Credit: NASA, ESA, and H. Ford (Johns Hopkins University); Image Processing: G. Kober (NASA Goddard/Catholic University of America))
Right now, the Large Hadron Collider (LHC) is the most powerful particle accelerator/collider ever built. Accelerating protons up to 299,792,455 m/s, just 3 m/s shy of the speed of light, they smash together at energies of 14 TeV, creating all sorts of new particles (and antiparticles) from raw energy, leveraging Einstein's famous E = mc² in an innovative way. By building detectors around the collision points, we can uncover all sorts of properties about any known particles and potentially discover new particles as well, as the LHC did for the Higgs boson back in the early 2010s.
But the LHC has a limited lifetime, and by the 2030s, will complete its data-taking runs. If we want to go beyond the LHC, we need to start planning for a new particle collider now, and there are four great options that can take us beyond the current frontier: a linear lepton collider, a circular lepton collider, a circular hadron collider, and a potentially new innovation of a circular muon collider. In this episode of the Starts With A Bang podcast, Dr. Cari Cesarotti joins us to discuss all of these options and much more, as we look ahead to the future of particle physics.
The serious question isn't whether we should build one (we definitely should), but which approach will be most fruitful in pushing our suite of knowledge beyond the known frontiers. There's an entire Universe to explore at the subatomic level, and those of us curious about the Universe want to know what's out there better than ever before!
(This image shows the expected signature of a Higgs boson decaying to bottom-quark jets around the collision point inside a muon collider. The yellow lines represent the decaying background of muons, while the red lines represent the b-quark jets. Credit: D Lucchesi et al.)
On the largest of cosmic scales, the best description we have of our Universe is known as the ΛCDM model with an inflationary hot Big Bang: our consensus cosmology. It tells us that we have a Universe consistent with being made of about 5% normal matter, a little bit of radiation in the form of photons, around 0.1% neutrinos, and the rest made of the mysterious dark matter (~27%) and dark energy (~68%). Governed by General Relativity, this explains what we see on Solar System scales, where dark matter and dark energy are negligible, and on cosmic scales, where dark matter and dark energy are important.
But on in-between scales, we aren't quite sure that this same "consensus cosmology" leads to a very successful description. It's long been known that, on galactic scales, rotating galaxies appear to obey a different force law: MOND, for MOdified Newtonian Dynamics. In MOND, the traditional Newtonian acceleration is replaced, at very low accelerations, by a combination of the Newtonian acceleration with a fundamental new parameter, which prevents accelerations from dropping too far below a certain value: around ~10^-10 meters-per-second-squared. If this deviation is real, it should show up someplace else: in pairs of stars separated by large distances, a class of systems known as wide binaries.
Although this area of physics was widely ignored for decades, new observations with the ESA's Gaia mission have recently brought it back into the forefront, where different teams are claiming different results based on how they use and interpret the data. In this rare edition of the Starts With A Bang podcast, I sit down with astrophysicist Xavier Hernandez of UNAM in Mexico, who's one of the main players in this story and a strong advocate of MOND as an alternative to dark matter. The conversation takes many interesting turns and as a result, we've got a great episode that's nearly two hours long. (Although there is some confusion over the maximum distance that Xavier's sample goes out to in the podcast: the correct answer is not mentioned, but turns out to be ~12,000 AU, not the 6000 or 16,000 mentioned in the podcast.) Take a listen, learn some new astrophysics, but most importantly, stay open to new challenges to the conventional paradigm. If there's a crack in our consensus cosmology, this area of astrophysics might someday be the critical blow that shatters it apart!
(This photo shows the bright, naked-eye star, Albireo. To the naked eye, it appears as just a single point of light. However, a binocular or telescope view shows that it's actually two very different colored stars separated by a substantial fraction of a light year: a wide binary system. Even thousands of years after its identification, we still don't know if this is a bound system, or two stars that happen to be passing one another in close proximity. Credit: Jared Smith/Flickr)
One of the most swiftly forgotten revolutions in all of science is our understanding of the Solar System out beyond Neptune. Although Pluto was discovered nearly a full century ago, it wasn't until the early 1990s that we even discovered the next object beyond Neptune that wasn't also part of the Plutonian system. And yet, in the 30 short years that have passed since then, we've learned so much more about the structure of the Kuiper belt and beyond, but we also face tremendous challenges in the quest to learn more thanks to an unwelcome intruder: the rise of satellite megaconstellations.
Although the original team of Mike Brown and Konstantin Batygin continue to advocate for a novel, massive, undiscovered world located at hundreds of times the Earth-Sun distance, they're largely alone, as other scientists have weighed in and see no evidence for this hypothetical world. Nevertheless, more science must be conducted to know for sure, and in the meantime, the rise of satellite megaconstellations such as Starlink now poses an existential threat to all sorts of endeavors, including planetary astronomy.
Here to guide us through the current status of the hunt for Planet Nine, as well as the new obstacles that astronomers are contending with, I'm so pleased to welcome Prof. Sam Lawler to the show. Sam is a professor at the University of Regina in Saskatchewan, Canada, and is also known for her advocacy work in favor of dark and quiet skies for all of humanity to enjoy and benefit from. It's a fascinating discussion that took me to some unexpected places, and I think you'll enjoy it a whole lot!
(This image shows an illustration of the hypothetical Planet Nine: a planet theorized to be more massive than Earth but hundreds of times farther away from the Sun than our own world. Credit: Tobias Roetsch/Future Publishing)
Every January, I head to the American Astronomical Society's big annual meeting with an ulterior motive in mind. Beyond merely uncovering new scientific findings, gathering information for potential stories, and connecting with friends and colleagues, I also look to meet emerging junior researchers who are swiftly becoming not only experts, but leaders, in their particular sub-field of astronomy.
One of the most popular research topics in astrophysics today is the connection between the dark Universe, including the only indirectly-observed dark matter and dark energy, and the observable components that astronomers routinely see: stars, galaxies, gas, plasma, and other forms of light-emitting and light-absorbing matter. The dark Universe, to date, is best revealed by looking at the luminous, electromagnetic signals that are imprinted onto the visible components of our cosmos.
To better understand what scientists are investigating, I'm so pleased to welcome KeShawn Ivory to the podcast. KeShawn is a PhD candidate at Vanderbilt University and researches the connection between dark matter, the non-luminous, gravitationally interacting "stuff" that holds the Universe together (as best as it can), and the luminous, observable galaxies that populate the visible Universe in numbers that rise into the trillions. It's a fascinating topic and a great addition to your May listening, right here on Starts With A Bang!
(The SIBELIUS project, which simulates galaxies and structures beyond the local Universe, is part of the Virgo Consortium that attempts to use cosmological simulations to reproduce features of galaxies, groups, and clusters that are seen all across the Universe. By using a mix of theory, observations, and simulations, astrophysicists can better understand the nature of dark matter in our cosmos. Credit: Virgo Consortium/SIBELIUS project)
Have you ever wondered what the full story with the galactic center is? Sure, we have stars, gas, and an all-important supermassive black hole, but for hundreds of light-years around the center, there's a remarkable story going on that's traced out in a variety of elements at a whole slew of different temperatures. Imprinted in that material is a remarkable set of features that reveals the magnetic fields generated in our galaxy's core, with some of them spanning much greater distances than have ever been seen elsewhere.
It's a testament to the power of multiwavelength astronomy, and in particular to the long wavelengths like the far-infrared, the microwave, and the radio portions of the spectrum that shows us these features of the Universe that simply can't be revealed in any other way. To help bring this story to all of you, I'm so pleased to welcome Dr. Natalie Butterfield, a scientist at the National Radio Astronomy Observatory (NRAO), to join us on this episode of the Starts With A Bang podcast.
Natalie is the discoverer of a giant magnetized ring some 30 light-years in diameter located in the galactic center, and is one of the leaders of the FIREPLACE survey: the Far-Infrared Polarimetric Large-Area CMZ Exploration survey that used the (sadly, now-defunct) SOFIA telescope to image the galactic center as never before. Strap in and have a listen, because you just might never think about the core of the Milky Way in the same way again!
(This image shows the magnetized galactic center, with various features highlighted, as imaged by the SOFIA/HAWC+ FIREPLACE survey team. The giant bubble at the left of the image is some 30 light-years wide, several times larger than any other supernova-blown bubble ever discovered. Credit: D. Paré et al., arXiv:2401.05317v2, 2024)
All throughout the Universe, galaxies exist in a great variety of shapes, ages, and states. Today's galaxies come in spirals, ellipticals, irregulars, and rings, all ranging in size from behemoths hundreds or even thousands of times larger than the Milky Way to dwarf galaxies with fewer than 0.1% of the stars present here in our cosmic home. But at the centers of practically all galaxies, particularly the large ones, lie supermassive black holes.
When matter falls in towards these black holes, it doesn't just get swallowed, but accelerates and heats up, leading to phenomena like accretion disks, jets, and emitted radiation all across the electromagnetic spectrum. When these conditions exist, we know we have what's called an active galaxy, and it isn't just the rest of the galaxy that's impacted by that central activity, but far larger structures in the Universe beyond.
Here to help us explore these objects and their impact this month is Skylar Grayson, a PhD candidate at the School of Earth and Space Exploration at Arizona State University. Skylar works at the intersection of theory and computational astrophysics, and helps simulate the Universe while focusing on the inclusion and modeling of this type of galactic activity, and is one of the people helping uncover just how profound of a role these galaxies play in shaping the Universe around them. Buckle up for another exciting 90 minute episode; you won't want to miss it!
The powerful radio galaxy Hercules A, shown above, is a stunning example of how central activity from the galaxy's active black hole influences not only the host galaxy, but a large region of space extending far outside the galaxy itself, as visible from the extent of the radio lobes highlighted visually. (Credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA))