Home
Categories
EXPLORE
True Crime
Comedy
Business
Society & Culture
Health & Fitness
Sports
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/a6/8a/9a/a68a9aa4-88ee-9709-7b2b-2eea1774e7fc/mza_16777081056488325014.jpg/600x600bb.jpg
Irgendwas mit Daten - Datenanalyse in der Industrie
Barbara Bredner
10 episodes
2 months ago
Auch in Ihren Daten stecken wertvolle Informationen! Möchten Sie mit Daten Ihre Produkte schneller entwickeln? Ihre Versuche effizienter auswerten? Ihre Prozesse besser verstehen und optimieren? Dann ist dieser Podcast für Sie. Barbara Bredner berät und begleitet seit 2003 Menschen in der Industrie bei der Datenauswertung in Forschung und Entwicklung, Prozess Engineering und Qualitätsmanagement. In ihrem Podcast erklärt sie, wie Sie eigene Daten auswerten und gezielt nutzen können. Sie gibt Tipps für solide und nachvollziehbare Analysen, damit Sie mit größerer Sicherheit und Klarheit belastbare Ergebnisse erreichen. Das Ziel sind abgesicherte Entscheidungen auf Grundlage Ihrer Datenanalysen!
Show more...
How To
Education,
Science,
Natural Sciences
RSS
All content for Irgendwas mit Daten - Datenanalyse in der Industrie is the property of Barbara Bredner and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Auch in Ihren Daten stecken wertvolle Informationen! Möchten Sie mit Daten Ihre Produkte schneller entwickeln? Ihre Versuche effizienter auswerten? Ihre Prozesse besser verstehen und optimieren? Dann ist dieser Podcast für Sie. Barbara Bredner berät und begleitet seit 2003 Menschen in der Industrie bei der Datenauswertung in Forschung und Entwicklung, Prozess Engineering und Qualitätsmanagement. In ihrem Podcast erklärt sie, wie Sie eigene Daten auswerten und gezielt nutzen können. Sie gibt Tipps für solide und nachvollziehbare Analysen, damit Sie mit größerer Sicherheit und Klarheit belastbare Ergebnisse erreichen. Das Ziel sind abgesicherte Entscheidungen auf Grundlage Ihrer Datenanalysen!
Show more...
How To
Education,
Science,
Natural Sciences
Episodes (10/10)
Irgendwas mit Daten - Datenanalyse in der Industrie
#50 Die Weibull-Verteilung
Die Weibull-Verteilung ist die Verteilung, die am häufigsten im Bereich Zuverlässigkeit & Lebensdauer eingesetzt wird. Der Name "Weibull-Verteilung" ist tatsächlich ein Plagiat. Viele Jahre vor der Veröffentlichung von Waloddi Weibull hatten andere dieselbe Verteilung unter "Rosin-Rammler-" oder RRSB-Verteilung beschrieben. In dieser Folge werden Anwendungsbeispiele für die Weibull-Verteilung beschrieben und Methoden vorgestellt, mit denen Ausfallsteilheit und charakteristische Lebensdauer sowie weitere Kenngrößen ermittelt werden.
Show more...
3 years ago
17 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#49 Zuverlässigkeit und Lebensdauer
Die Belastbarkeit und Haltbarkeit ist unter anderem durch die Neufassung der Verbraucherschutzgesetze in Deutschland immer wieder ein Thema. Gerade in diesem Bereich ist eine 100 %-Kontrolle vor Auslieferung unmöglich, deshalb wird über Dauerlaufversuche ermittelt, wie lange Komponenten und Bauteile voraussichtlich halten.
Show more...
3 years ago
19 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#48 Was sind wichtige Schritte in der DoE
Die statistische Versuchsplanung und -auswertung (Design of Experiments, DoE) hilft, Versuche und Prozesse besser zu verstehen, optimale Arbeitspunkte zu finden oder Nachweise zu führen. Damit die Ziele erreicht werden können sind verschiedene Schritte notwendig, insbesondere bevor ein Versuchsplan ausgewählt, erstellt und umgesetzt wird. In der Folge wird der Ablauf eines DoE-Projekts beschrieben und erläutert, wann mehr als ein Versuchsplan notwendig ist.
Show more...
3 years ago
21 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#47 In Ordnung oder nicht in Ordnung, das ist hier die Frage!
Maschinelles Lernen kann auch bei attributiven Zielgrößen (in Ordnung/nicht in Ordnung, gut/schlecht, funktioniert/funktioniert nicht) genutzt werden, um Prozesse besser zu verstehen und zu optimieren. Die Machine Learning (ML) Modelle für attributive Zielgrößen sollten vor der Nutzung genauso wie alle anderen Modelle auf ihre Qualität geprüft werden. In dieser Folge geht es um Strategien und Kennzahlen, mit denen die Erklär-Qualität bei der Klassifikation bzw. bei attributiven Zielgrößen geprüft wird.
Show more...
3 years ago
25 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#46 Wie gut funktionieren Machine Learning Modelle
Machine Learning Modelle helfen uns unter anderem dabei zu verstehen, wie Einflussgrößen ein Versuchs- oder Prozess-Ergebnis verändern (supervised learning, d. h. es gibt eine Zielgröße). Bevor ein Modell produktiv genutzt wird, sollte die Modell- bzw. Erklär-Qualität geprüft werden. Diese Folge stellt Kennzahlen für messbare bzw. variable Zielgrößen wie z. B. die Länge oder den Durchmesser von Stahlrohren vor.
Show more...
3 years ago
25 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#45 Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?
"Normal"-verteilt klingt, als wären alle Messwerte so verteilt. Oft sind Messwerte in der Praxis nicht-normalverteilt. In dieser Folge geht es um Gründe für Abweichungen von der Normalverteilung und Auswertungsmethoden, mit denen die Ursachen untersucht und bewertet werden können.
Show more...
3 years ago
21 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#44 Korrelation, Regression, ANOVA - Alles das Gleiche?
Bei der Analyse von Zusammenhängen und Einflüssen werden Korrelation, Regression und Varianzanalyse (ANOVA) eingesetzt. Die wahrgenommenen Unterschiede sind oft sehr viel kleiner als gedacht und liegen eher in der historischen Entwicklung begründet. In dieser Folgen werden Gemeinsamkeiten und Unterschiede beschrieben und der Zusammenhang mit dem allgemeinen linearen Modell (General Linear Model) aufgezeigt.
Show more...
3 years ago
25 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#43 Datenvisualisierungen & Tools
Datenvisualisierungen (aka bunte Bildchen) sind überall. Sind sie auch überall sinnvoll und warum werden sie so oft eingesetzt? In dieser Folge erfahren Sie, wie Sie gezielt Datenvisualisierungen einsetzen können und wann es besser ist, Texte und Tabellen zu verwenden. Mit Leitfragen zu Zielgruppe, Komplexität und Daten haben Sie eine gute Grundlage für die Entscheidung, welche Datenvisualisierung sinnvoll ist und mit welchem Tool sie gut umgesetzt werden kann.
Show more...
3 years ago
20 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#42 Wie sinnvoll sind Digitalisierung & Automatisierung in der Datenanalyse?
Digitalisierung und Automatisierung bieten unbegrenzte Möglichkeiten. Alles immer und am besten gleichzeitig zu machen, ist weder möglich noch sinnvoll, deshalb geht es in dieser Folge darum, sinnvolle Projekte zu finden und auszuwählen, in denen Digitalisierung hilfreich ist und Automatisierung entlastet. Nichts ist ineffizienter als der Anspruch, ALLES zu digitalisieren oder zu automatisieren!
Show more...
3 years ago
23 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
#41 Signifikant gleich - geht das überhaupt?
Signifikante Unterschiede können die meisten statistischen Tests liefern. Manchmal muss kein Unterschied, sondern die Gleichheit oder Gleich-Genug-Heit gezeigt werden. In dieser Folge geht es um die Testverfahren, die so etwas Ähnliches wie signifikante Gleichheit zeigen können und wo sie in der Industrie angewendet werden.
Show more...
3 years ago
19 minutes

Irgendwas mit Daten - Datenanalyse in der Industrie
Auch in Ihren Daten stecken wertvolle Informationen! Möchten Sie mit Daten Ihre Produkte schneller entwickeln? Ihre Versuche effizienter auswerten? Ihre Prozesse besser verstehen und optimieren? Dann ist dieser Podcast für Sie. Barbara Bredner berät und begleitet seit 2003 Menschen in der Industrie bei der Datenauswertung in Forschung und Entwicklung, Prozess Engineering und Qualitätsmanagement. In ihrem Podcast erklärt sie, wie Sie eigene Daten auswerten und gezielt nutzen können. Sie gibt Tipps für solide und nachvollziehbare Analysen, damit Sie mit größerer Sicherheit und Klarheit belastbare Ergebnisse erreichen. Das Ziel sind abgesicherte Entscheidungen auf Grundlage Ihrer Datenanalysen!