
Most AI teams find "evals" frustrating, but ML Engineer Hamel Husain argues they’re just using the wrong playbook. In this episode, he lays out a data-centric approach to systematically measure and improve AI, turning unreliable prototypes into robust, production-ready systems.
Drawing from his experience getting countless teams unstuck, Hamel explains why the solution requires a "revenge of the data scientists." He details the essential mindset shifts, error analysis techniques, and practical steps needed to move beyond guesswork and build AI products you can actually trust.
We talk through:
If you're tired of ambiguous "vibe checks" and want a clear process that delivers real improvement, this episode provides the definitive roadmap.
LINKS
🎓 Learn more: