This week we are joined by Ari Morcos. Ari is a research scientist at Facebook AI Research (FAIR) in Menlo Park working on understanding the mechanisms underlying neural network computation and function, and using these insights to build machine learning systems more intelligently. In particular, he has worked on a variety of topics, including understanding the lottery ticket hypothesis, self-supervised learning, the mechanisms underlying common regularizers, and the properties predictive of ...
All content for Underrated ML is the property of Sara Hooker & Sean Hooker and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
This week we are joined by Ari Morcos. Ari is a research scientist at Facebook AI Research (FAIR) in Menlo Park working on understanding the mechanisms underlying neural network computation and function, and using these insights to build machine learning systems more intelligently. In particular, he has worked on a variety of topics, including understanding the lottery ticket hypothesis, self-supervised learning, the mechanisms underlying common regularizers, and the properties predictive of ...
We conclude season one of Underrated ML by having Stephen Merity on as our guest. Stephen has worked at various institutions such as MetaMind and Salesforce ohana, Google Sydney, Freelancer.com, the Schwa Lab at the University of Sydney, the team at Grok Learning, the non-profit Common Crawl, and IACS @ Harvard. He also holds a Bachelor of Information Technology from the University of Sydney and a Master of Science in Computational Science and Engineering from Harvard University. In this wee...
Underrated ML
This week we are joined by Ari Morcos. Ari is a research scientist at Facebook AI Research (FAIR) in Menlo Park working on understanding the mechanisms underlying neural network computation and function, and using these insights to build machine learning systems more intelligently. In particular, he has worked on a variety of topics, including understanding the lottery ticket hypothesis, self-supervised learning, the mechanisms underlying common regularizers, and the properties predictive of ...