This week we are joined by Ari Morcos. Ari is a research scientist at Facebook AI Research (FAIR) in Menlo Park working on understanding the mechanisms underlying neural network computation and function, and using these insights to build machine learning systems more intelligently. In particular, he has worked on a variety of topics, including understanding the lottery ticket hypothesis, self-supervised learning, the mechanisms underlying common regularizers, and the properties predictive of ...
All content for Underrated ML is the property of Sara Hooker & Sean Hooker and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
This week we are joined by Ari Morcos. Ari is a research scientist at Facebook AI Research (FAIR) in Menlo Park working on understanding the mechanisms underlying neural network computation and function, and using these insights to build machine learning systems more intelligently. In particular, he has worked on a variety of topics, including understanding the lottery ticket hypothesis, self-supervised learning, the mechanisms underlying common regularizers, and the properties predictive of ...
Interestingness predictions and getting to grips with data privacy
Underrated ML
1 hour 8 minutes
3 years ago
Interestingness predictions and getting to grips with data privacy
This week we are joined by Naila Murray. Naila obtained a B.Sc. in Electrical Engineering from Princeton University in 2007. In 2012, she received her PhD from the Universitat Autonoma de Barcelona, in affiliation with the Computer Vision Center. She joined NAVER LABS Europe (then Xerox Research Centre Europe) in January 2013, working on topics including fine-grained visual categorization, image retrieval, and visual attention. From 2015 to 2019 she led the computer vision team at NLE. She cu...
Underrated ML
This week we are joined by Ari Morcos. Ari is a research scientist at Facebook AI Research (FAIR) in Menlo Park working on understanding the mechanisms underlying neural network computation and function, and using these insights to build machine learning systems more intelligently. In particular, he has worked on a variety of topics, including understanding the lottery ticket hypothesis, self-supervised learning, the mechanisms underlying common regularizers, and the properties predictive of ...