Dr Janjira Thaipadungpanit from our MORU unit in Bangkok, Thailand, tells us about her research on molecular diagnosis and bacterial genotyping A molecular microbiologist, Dr Janjira’s research focusses on using bacterial typing based on genome to confirm which disease is present in a patient. She aims to develop a single whole genome sequence type test using mutliple-PCR assays that can determine from a single sample of blood what bacteria or viruses are present in a patient’s blood – thereby speeding up diagnosis and potentially saving lives in resource-limited settings.
Head of Molecular Microbiology at MORU, Dr Janjira Thaipadungpanit’s research interests include the molecular epidemiology of leptospirosis and melioidosis using multilocus sequence typing or genome data and molecular diagnosis to identify the causes of acute febrile illness and sepsis in patients. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
All content for Translational Medicine is the property of Oxford University and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Dr Janjira Thaipadungpanit from our MORU unit in Bangkok, Thailand, tells us about her research on molecular diagnosis and bacterial genotyping A molecular microbiologist, Dr Janjira’s research focusses on using bacterial typing based on genome to confirm which disease is present in a patient. She aims to develop a single whole genome sequence type test using mutliple-PCR assays that can determine from a single sample of blood what bacteria or viruses are present in a patient’s blood – thereby speeding up diagnosis and potentially saving lives in resource-limited settings.
Head of Molecular Microbiology at MORU, Dr Janjira Thaipadungpanit’s research interests include the molecular epidemiology of leptospirosis and melioidosis using multilocus sequence typing or genome data and molecular diagnosis to identify the causes of acute febrile illness and sepsis in patients. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Professor Ben Cooper from MORU in Thailand uses mathematical modelling and statistical techniques to help understand the dynamics of infectious disease and evaluate potential control measures. Antibiotic resistance is one of today's major global health problems. Mathematical models help us answer what if questions and evaluate the impact of specific interventions such as hands hygiene on the spread of bacterial drug resistance. Effective solutions are then translated into policy changes or changes in practice at national or international level. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Translational Medicine
Dr Janjira Thaipadungpanit from our MORU unit in Bangkok, Thailand, tells us about her research on molecular diagnosis and bacterial genotyping A molecular microbiologist, Dr Janjira’s research focusses on using bacterial typing based on genome to confirm which disease is present in a patient. She aims to develop a single whole genome sequence type test using mutliple-PCR assays that can determine from a single sample of blood what bacteria or viruses are present in a patient’s blood – thereby speeding up diagnosis and potentially saving lives in resource-limited settings.
Head of Molecular Microbiology at MORU, Dr Janjira Thaipadungpanit’s research interests include the molecular epidemiology of leptospirosis and melioidosis using multilocus sequence typing or genome data and molecular diagnosis to identify the causes of acute febrile illness and sepsis in patients. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/