Home
Categories
EXPLORE
True Crime
Comedy
Business
Society & Culture
Sports
Technology
History
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts6/v4/ba/b6/32/bab63247-7d28-7b10-97e7-ab43d8c6eb79/mza_6932971600306700947.jpg/600x600bb.jpg
Thermal and Statistical Physics
Prof. Carlson
27 episodes
9 months ago
Thermal and Statistical Physics Purdue University Phys 416
Show more...
Courses
Education,
Science
RSS
All content for Thermal and Statistical Physics is the property of Prof. Carlson and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Thermal and Statistical Physics Purdue University Phys 416
Show more...
Courses
Education,
Science
https://is1-ssl.mzstatic.com/image/thumb/Podcasts6/v4/ba/b6/32/bab63247-7d28-7b10-97e7-ab43d8c6eb79/mza_6932971600306700947.jpg/600x600bb.jpg
Lecture23: Brownian Motion and Diffusion
Thermal and Statistical Physics
19 years ago
Lecture23: Brownian Motion and Diffusion
Brownian motion was discovered by a botanist named Brown, when he looked at water under a microscope, and observed pollen grains "jiggling" about in it. Einstein eventually explained it as due to the random collisions the pollen grain experienced from the water molecules. We compare the pollen grain to a drunk person walking home, and calculate how far the pollen grain can get by this type of diffusion. We also introduce the fluctuation-dissipation theorem, a far-reaching principle in advanced statistical mechanics that says that the microscopic thermal fluctuations in a system are the same microscopic processes that are responsible for things like drag, viscosity, and electrical resistance. (Why is that so cool? Because it means you can predict nonequilibrium properties -- those in the presence of an applied field like voltage -- to equilibrium properties like thermal fluctuations.) We also derive Fick's law of diffusion -- particles diffuse away from high concentrations. Go figure! Shown in class: Nice movies on the web about colloid particles in milk executing Brownian motion. There's a great applet on Brownian motion to play with here. Lecture Audio
Thermal and Statistical Physics
Thermal and Statistical Physics Purdue University Phys 416