Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Music
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/86/c5/2a/86c52a11-3771-aa3c-5508-0298944f6c72/mza_17787618070991361070.jpg/600x600bb.jpg
Theoretical Physics - From Outer Space to Plasma
Oxford University
98 episodes
6 months ago
Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Show more...
Education
RSS
All content for Theoretical Physics - From Outer Space to Plasma is the property of Oxford University and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Show more...
Education
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/86/c5/2a/86c52a11-3771-aa3c-5508-0298944f6c72/mza_17787618070991361070.jpg/600x600bb.jpg
The physics of “flat” electrons
Theoretical Physics - From Outer Space to Plasma
53 minutes
6 months ago
The physics of “flat” electrons
Dr Dumitru Călugăru explores the main strategies for engineering flat band materials, discusses band topology concepts and their relevance to flat band physics, and highlights the role of strong interactions in these materials. Landau’s Fermi liquid theory, a cornerstone of condensed matter physics, explains why electrons in most metallic crystalline solids behave as free fermions with renormalized parameters at low enough temperatures. However, the most exotic phases of quantum matter emerge when this framework breaks down—typically when electron-electron interactions become strong enough to surpass the perturbative regime. Such interactions are naturally enhanced in flat band materials, where suppressed kinetic energy allows electron-electron repulsion to dominate. In this talk, I will explore the main strategies for engineering flat band materials, with an emphasis on conventional crystalline systems while briefly touching on engineered heterostructures. I will also introduce key concepts from band topology in an intuitive manner and discuss their relevance to flat band physics. Finally, I will highlight the role of strong interactions in these materials and survey recent experimental realizations.
Theoretical Physics - From Outer Space to Plasma
Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/