Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
All content for Theoretical Physics - From Outer Space to Plasma is the property of Oxford University and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Professor Prateek Agrawal discusses the ongoing crisis in cosmology regarding the measurement of the Hubble parameter by two separate probes in this Morning of Theoretical Physics talk from 9th November, 2024 Professor Prateek Agrawal discusses the Hubble tension.
Cosmology has matured into a precision science over the last couple of decades. We are now in a position to test cosmological
models to percent level precision, and cracks in our understanding of the universe have emerged. I will show how the
measurement of the Hubble parameter by two separate probes has become an ongoing crisis in cosmology, and discuss
some of the proposed solutions.
Theoretical Physics - From Outer Space to Plasma
Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/