Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
All content for Theoretical Physics - From Outer Space to Plasma is the property of Oxford University and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Cosmic strings and gravitational waves from the early Universe
Theoretical Physics - From Outer Space to Plasma
39 minutes
11 months ago
Cosmic strings and gravitational waves from the early Universe
Professor Edward Hardy discusses how the network of cosmic strings that occurs in some theories of the early Universe evolves and emits gravitational waves in this Morning of Theoretical Physics talk from 9th November, 2024. Professor Edward Hardy discusses cosmic strings and gravitational waves from the early Universe.
Cosmic strings are one-dimensional objects that often arise if a symmetry is spontaneously broken, as occurs in the early Universe
in many theories of physics beyond the standard model. I will describe how the resulting network of strings evolves and in the
process emits gravitational waves. These gravitational waves might be detectable in spectacularly precise searches today, and if
discovered could give us information about physics at extremely high energies, far beyond any that could be explored directly
e.g. in particle colliders.
Theoretical Physics - From Outer Space to Plasma
Dr Rahil Valani provides an introduction to active matter (a field focusing on active particles' nonlinear dynamical behaviors) exploring the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Active particles are non-equilibrium entities that consume energy from their environment and convert it into directed motion. They can be living organisms such as cells, bacteria, animals and birds, or inanimate entities such as colloidal particles or robots. A large collection of active particles, known as active matter, exhibits emergent collective phenomena such as bird flocks, mammalian herds, bacterial colonies and swarming robots. In this talk, I will provide an introduction to active particles and active matter -- a rapidly growing field of physics, focusing on the nonlinear dynamical behaviors of such particles. We will explore in particular the active system of superwalking droplets that can exhibit hydrodynamic quantum analogs. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/