Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
History
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/27/98/60/279860de-4994-ce48-e6d9-5bfd053125bd/mza_4193365046938025663.jpg/600x600bb.jpg
The Geometry of Closed Packed Spheres
Nick Trif
23 episodes
1 day ago
The Geometry of Closed Packed Spheres Mission statement: To change minds, to open eyes, to educate and inspire people designing and building better worlds. Beauty makes beautiful things beautiful! A sphere can be completely surrounded by exactly twelve other identical spheres. Close-packing of spheres helps us explore the shape of the physical space. A good design of a 3D structure shall obey the principles, freedom, and constraints imposed by the physical space around us.
Show more...
Mathematics
Science
RSS
All content for The Geometry of Closed Packed Spheres is the property of Nick Trif and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
The Geometry of Closed Packed Spheres Mission statement: To change minds, to open eyes, to educate and inspire people designing and building better worlds. Beauty makes beautiful things beautiful! A sphere can be completely surrounded by exactly twelve other identical spheres. Close-packing of spheres helps us explore the shape of the physical space. A good design of a 3D structure shall obey the principles, freedom, and constraints imposed by the physical space around us.
Show more...
Mathematics
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/42047846/42047846-1726670880201-54d8332f37e3.jpg
13. Archimedean Solids
The Geometry of Closed Packed Spheres
8 minutes 24 seconds
1 year ago
13. Archimedean Solids

The text describes the 13 Archimedean solids in terms of their relationship to the close-packing of spheres (CPS) arrangement. The author explains how these semi-regular polyhedrons, such as the cuboctahedron, truncated tetrahedron, and truncated icosahedron, can be constructed by manipulating Platonic solids within the framework of CPS. The text emphasizes that the CPS arrangement, where points are considered infinitesimal spheres, offers a fundamental understanding of geometrical concepts such as similarity and quantization of space. The text then explores the relationship between the CPS Geometry and other geometric and mathematical systems, including the Cartesian Geometry and Number Theory.

The Geometry of Closed Packed Spheres
The Geometry of Closed Packed Spheres Mission statement: To change minds, to open eyes, to educate and inspire people designing and building better worlds. Beauty makes beautiful things beautiful! A sphere can be completely surrounded by exactly twelve other identical spheres. Close-packing of spheres helps us explore the shape of the physical space. A good design of a 3D structure shall obey the principles, freedom, and constraints imposed by the physical space around us.