When it comes to the topic of drug discovery and development, scientists are busy furrowing their lab-goggled brows trying to understand what’s real and what’s hype when it comes to the power and potential of AI.
This *Resonance Test* conversation perfectly dramatizes the situation. In this episode, Emma Eng, VP of Global Data & AI, Development at Novo Nordisk, and scientist and strategist Chris Waller provide a candid view of drug development in the AI era.
“We're standing on a revolution,” says Eng, reminding us that “we've done it so many other times” with the birth of the computer and the birth of the internet. It’s prudent, she cautions, not to rush to judgement guided by either zealots or skeptics.
Waller says, of the articles about AI and leadership in *Harvard Business Review,* one could do “a search and replace ‘AI’ with any other technological change that's happened in the last 30 years. It's the same kind of trend and processes and characteristics that you need in your leadership to implement the technology appropriately to get the outcomes that you're looking for.”
Which means, for pharma, much uncertainty and much experimentation.
“I think experimentation is good,” says Eng, who then adds that we need to always keep track of what is it that we're experimenting on. She says that the word “experimentation” can “sound very fluid” but in fact, “It's a very structured process. You set up some very clear objectives and you either prove or don't prove those objectives.”
Waller references the various revolutions (throughput screening, combinational chemistry, data, and analytics revolutions) that pharma has seen and says: “We've all held out hope for each and every one of these revolutions that the drug discovery process is going to be shrunk by 50% and cost half as much. And every time we turn around, it's still 12 to 15 years, $1.5 to $2 billion.”
Will AI make the big difference, finally?
“Maybe we need to be revolutionized as an industry,” she says. “It can be hard to make much of a difference as long as there are few big players.” Just a few big players, she says, is “the nature of pharma.”
Of course, our scientists are measured in their assessments about industry change. After all, as Waller says, the systems involved—the human body, the regulatory environment, the commercial ecosystems—are all “super-complicated.”
Eng notes that an important side-effect around the AI hype is corporate interest in data. “Now it's much easier to put that topic on the table saying, ‘If you want to do AI, you need to take care of your data and you need to treat it like an asset.’”
Listen on as they test topics such as regional and regulatory challenges in AI adoption, change management, and future tech and long-term impact (watch out for quantum, everyone!).
In the end, Eng returns to the idea of revolutions. “You think you want so much change in the beginning which you don't get because it takes time,” says Eng. This makes us underestimate what will happen later. Having such a farseeing mindset is significant, she says, because “these technology shifts will have a large impact on the long term.”
Host: Alison Kotin
Engineer: Kyp Pilalas
Producer: Ken Gordon
All content for The EPAM Continuum Podcast Network is the property of EPAM Continuum and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
When it comes to the topic of drug discovery and development, scientists are busy furrowing their lab-goggled brows trying to understand what’s real and what’s hype when it comes to the power and potential of AI.
This *Resonance Test* conversation perfectly dramatizes the situation. In this episode, Emma Eng, VP of Global Data & AI, Development at Novo Nordisk, and scientist and strategist Chris Waller provide a candid view of drug development in the AI era.
“We're standing on a revolution,” says Eng, reminding us that “we've done it so many other times” with the birth of the computer and the birth of the internet. It’s prudent, she cautions, not to rush to judgement guided by either zealots or skeptics.
Waller says, of the articles about AI and leadership in *Harvard Business Review,* one could do “a search and replace ‘AI’ with any other technological change that's happened in the last 30 years. It's the same kind of trend and processes and characteristics that you need in your leadership to implement the technology appropriately to get the outcomes that you're looking for.”
Which means, for pharma, much uncertainty and much experimentation.
“I think experimentation is good,” says Eng, who then adds that we need to always keep track of what is it that we're experimenting on. She says that the word “experimentation” can “sound very fluid” but in fact, “It's a very structured process. You set up some very clear objectives and you either prove or don't prove those objectives.”
Waller references the various revolutions (throughput screening, combinational chemistry, data, and analytics revolutions) that pharma has seen and says: “We've all held out hope for each and every one of these revolutions that the drug discovery process is going to be shrunk by 50% and cost half as much. And every time we turn around, it's still 12 to 15 years, $1.5 to $2 billion.”
Will AI make the big difference, finally?
“Maybe we need to be revolutionized as an industry,” she says. “It can be hard to make much of a difference as long as there are few big players.” Just a few big players, she says, is “the nature of pharma.”
Of course, our scientists are measured in their assessments about industry change. After all, as Waller says, the systems involved—the human body, the regulatory environment, the commercial ecosystems—are all “super-complicated.”
Eng notes that an important side-effect around the AI hype is corporate interest in data. “Now it's much easier to put that topic on the table saying, ‘If you want to do AI, you need to take care of your data and you need to treat it like an asset.’”
Listen on as they test topics such as regional and regulatory challenges in AI adoption, change management, and future tech and long-term impact (watch out for quantum, everyone!).
In the end, Eng returns to the idea of revolutions. “You think you want so much change in the beginning which you don't get because it takes time,” says Eng. This makes us underestimate what will happen later. Having such a farseeing mindset is significant, she says, because “these technology shifts will have a large impact on the long term.”
Host: Alison Kotin
Engineer: Kyp Pilalas
Producer: Ken Gordon
The Resonance Test 89: Guest Speaker Rowan Curran and Elaina Shekhter on Generative AI
The EPAM Continuum Podcast Network
39 minutes 47 seconds
1 year ago
The Resonance Test 89: Guest Speaker Rowan Curran and Elaina Shekhter on Generative AI
Can today’s companies afford to be Luddites?
This is one of the big questions that Elaina Shekhter, EPAM’s Chief Marketing & Strategy Officer and SVP, puts to today’s *Resonance Test* guest, Rowan Curran, Senior Analyst at Forrester.
In the case of generative AI, both answer: No. Why? Shekhter notes that whatever your competitive edge in 2022, today everyone is encountering a different mode of operations. The positioning around the success or failure of your AI efforts must be “accelerating along the vector of AI, because the opportunity to get away from the competition, faster, is much greater now than it ever has been.”
In a lively and informed session of back-and-forth, they parse what is real and what is a hallucination in GenAI *at this moment.*
Curran says that lately there has been an “ebullient explosion” of work on tools and approaches to manage system outputs. “Are we there yet in terms of having these be optimized architectures and things like that? Absolutely not. But is there tons of work being done there or are we approaching reasonable solutions to those problems? Yes, absolutely.”
What should companies be doing to ensure they're ready to benefit and succeed with AI?
“Right now, everybody's building the gen one of enterprise generative AI applications,” says Curran, and this will make them ubiquitous. But if your organization fails to adopt them, he adds: “You are going to be falling behind everybody else who is actually building with this stuff today.”
Listen closely and learn what will the currency of the future be, the commercial and economic models of successful GenAI, the nature of productivity gains: “Somebody saving 30 minutes per day who makes $60K a year is going to have a very different economic impact on the company versus somebody who makes $200K a year and saves 30 minutes per day,” Curran says. They also discuss how this new tech will transform the shape of work and what companies will be focusing on this year: “2023 is the year of excitement and experimentation, and 2024 is the year of optimization and efficiency,” says Curran.
Oh… and it might also transform the future of fun! “I do think we could use the new technology to make work more fun for people,” says Shekhter, who sees in the soaring advance of multimodal LLMs an opportunity for people “to develop in an enlightened way.”
Enlighten yourself first. Smash that play button.
Host: Alison Kotin
Engineer: Kyp Pilalas
Producer: Ken Gordon
The EPAM Continuum Podcast Network
When it comes to the topic of drug discovery and development, scientists are busy furrowing their lab-goggled brows trying to understand what’s real and what’s hype when it comes to the power and potential of AI.
This *Resonance Test* conversation perfectly dramatizes the situation. In this episode, Emma Eng, VP of Global Data & AI, Development at Novo Nordisk, and scientist and strategist Chris Waller provide a candid view of drug development in the AI era.
“We're standing on a revolution,” says Eng, reminding us that “we've done it so many other times” with the birth of the computer and the birth of the internet. It’s prudent, she cautions, not to rush to judgement guided by either zealots or skeptics.
Waller says, of the articles about AI and leadership in *Harvard Business Review,* one could do “a search and replace ‘AI’ with any other technological change that's happened in the last 30 years. It's the same kind of trend and processes and characteristics that you need in your leadership to implement the technology appropriately to get the outcomes that you're looking for.”
Which means, for pharma, much uncertainty and much experimentation.
“I think experimentation is good,” says Eng, who then adds that we need to always keep track of what is it that we're experimenting on. She says that the word “experimentation” can “sound very fluid” but in fact, “It's a very structured process. You set up some very clear objectives and you either prove or don't prove those objectives.”
Waller references the various revolutions (throughput screening, combinational chemistry, data, and analytics revolutions) that pharma has seen and says: “We've all held out hope for each and every one of these revolutions that the drug discovery process is going to be shrunk by 50% and cost half as much. And every time we turn around, it's still 12 to 15 years, $1.5 to $2 billion.”
Will AI make the big difference, finally?
“Maybe we need to be revolutionized as an industry,” she says. “It can be hard to make much of a difference as long as there are few big players.” Just a few big players, she says, is “the nature of pharma.”
Of course, our scientists are measured in their assessments about industry change. After all, as Waller says, the systems involved—the human body, the regulatory environment, the commercial ecosystems—are all “super-complicated.”
Eng notes that an important side-effect around the AI hype is corporate interest in data. “Now it's much easier to put that topic on the table saying, ‘If you want to do AI, you need to take care of your data and you need to treat it like an asset.’”
Listen on as they test topics such as regional and regulatory challenges in AI adoption, change management, and future tech and long-term impact (watch out for quantum, everyone!).
In the end, Eng returns to the idea of revolutions. “You think you want so much change in the beginning which you don't get because it takes time,” says Eng. This makes us underestimate what will happen later. Having such a farseeing mindset is significant, she says, because “these technology shifts will have a large impact on the long term.”
Host: Alison Kotin
Engineer: Kyp Pilalas
Producer: Ken Gordon