Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Music
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts71/v4/ec/3c/ac/ec3cac17-d460-db87-1f08-e7b2ff1a02ff/mza_2395170188661892592.jpg/600x600bb.jpg
The EPAM Continuum Podcast Network
EPAM Continuum
174 episodes
3 weeks ago
When it comes to the topic of drug discovery and development, scientists are busy furrowing their lab-goggled brows trying to understand what’s real and what’s hype when it comes to the power and potential of AI. This *Resonance Test* conversation perfectly dramatizes the situation. In this episode, Emma Eng, VP of Global Data & AI, Development at Novo Nordisk, and scientist and strategist Chris Waller provide a candid view of drug development in the AI era. “We're standing on a revolution,” says Eng, reminding us that “we've done it so many other times” with the birth of the computer and the birth of the internet. It’s prudent, she cautions, not to rush to judgement guided by either zealots or skeptics. Waller says, of the articles about AI and leadership in *Harvard Business Review,* one could do “a search and replace ‘AI’ with any other technological change that's happened in the last 30 years. It's the same kind of trend and processes and characteristics that you need in your leadership to implement the technology appropriately to get the outcomes that you're looking for.” Which means, for pharma, much uncertainty and much experimentation. “I think experimentation is good,” says Eng, who then adds that we need to always keep track of what is it that we're experimenting on. She says that the word “experimentation” can “sound very fluid” but in fact, “It's a very structured process. You set up some very clear objectives and you either prove or don't prove those objectives.” Waller references the various revolutions (throughput screening, combinational chemistry, data, and analytics revolutions) that pharma has seen and says: “We've all held out hope for each and every one of these revolutions that the drug discovery process is going to be shrunk by 50% and cost half as much. And every time we turn around, it's still 12 to 15 years, $1.5 to $2 billion.” Will AI make the big difference, finally? “Maybe we need to be revolutionized as an industry,” she says. “It can be hard to make much of a difference as long as there are few big players.” Just a few big players, she says, is “the nature of pharma.” Of course, our scientists are measured in their assessments about industry change. After all, as Waller says, the systems involved—the human body, the regulatory environment, the commercial ecosystems—are all “super-complicated.” Eng notes that an important side-effect around the AI hype is corporate interest in data. “Now it's much easier to put that topic on the table saying, ‘If you want to do AI, you need to take care of your data and you need to treat it like an asset.’” Listen on as they test topics such as regional and regulatory challenges in AI adoption, change management, and future tech and long-term impact (watch out for quantum, everyone!). In the end, Eng returns to the idea of revolutions. “You think you want so much change in the beginning which you don't get because it takes time,” says Eng. This makes us underestimate what will happen later. Having such a farseeing mindset is significant, she says, because “these technology shifts will have a large impact on the long term.” Host: Alison Kotin Engineer: Kyp Pilalas Producer: Ken Gordon
Show more...
Business
RSS
All content for The EPAM Continuum Podcast Network is the property of EPAM Continuum and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
When it comes to the topic of drug discovery and development, scientists are busy furrowing their lab-goggled brows trying to understand what’s real and what’s hype when it comes to the power and potential of AI. This *Resonance Test* conversation perfectly dramatizes the situation. In this episode, Emma Eng, VP of Global Data & AI, Development at Novo Nordisk, and scientist and strategist Chris Waller provide a candid view of drug development in the AI era. “We're standing on a revolution,” says Eng, reminding us that “we've done it so many other times” with the birth of the computer and the birth of the internet. It’s prudent, she cautions, not to rush to judgement guided by either zealots or skeptics. Waller says, of the articles about AI and leadership in *Harvard Business Review,* one could do “a search and replace ‘AI’ with any other technological change that's happened in the last 30 years. It's the same kind of trend and processes and characteristics that you need in your leadership to implement the technology appropriately to get the outcomes that you're looking for.” Which means, for pharma, much uncertainty and much experimentation. “I think experimentation is good,” says Eng, who then adds that we need to always keep track of what is it that we're experimenting on. She says that the word “experimentation” can “sound very fluid” but in fact, “It's a very structured process. You set up some very clear objectives and you either prove or don't prove those objectives.” Waller references the various revolutions (throughput screening, combinational chemistry, data, and analytics revolutions) that pharma has seen and says: “We've all held out hope for each and every one of these revolutions that the drug discovery process is going to be shrunk by 50% and cost half as much. And every time we turn around, it's still 12 to 15 years, $1.5 to $2 billion.” Will AI make the big difference, finally? “Maybe we need to be revolutionized as an industry,” she says. “It can be hard to make much of a difference as long as there are few big players.” Just a few big players, she says, is “the nature of pharma.” Of course, our scientists are measured in their assessments about industry change. After all, as Waller says, the systems involved—the human body, the regulatory environment, the commercial ecosystems—are all “super-complicated.” Eng notes that an important side-effect around the AI hype is corporate interest in data. “Now it's much easier to put that topic on the table saying, ‘If you want to do AI, you need to take care of your data and you need to treat it like an asset.’” Listen on as they test topics such as regional and regulatory challenges in AI adoption, change management, and future tech and long-term impact (watch out for quantum, everyone!). In the end, Eng returns to the idea of revolutions. “You think you want so much change in the beginning which you don't get because it takes time,” says Eng. This makes us underestimate what will happen later. Having such a farseeing mindset is significant, she says, because “these technology shifts will have a large impact on the long term.” Host: Alison Kotin Engineer: Kyp Pilalas Producer: Ken Gordon
Show more...
Business
https://i1.sndcdn.com/artworks-35TNyL3OSqVGbISC-OT51xw-t3000x3000.png
Silo Busting 69: Neatsun Ziv and Sam Rehman on the Balanced Approach to Risk Management
The EPAM Continuum Podcast Network
21 minutes 49 seconds
9 months ago
Silo Busting 69: Neatsun Ziv and Sam Rehman on the Balanced Approach to Risk Management
What should we be focusing on? It’s an essential question for all of us… but for those in the cybersecurity game, it’s critical. Focusing on the wrong things here can be *costly.* Or so says Neatsun Ziv, Co-Founder and CEO of OX Security, in this *#CybersecurityByDesign* conversation with Sam Rehman, EPAM’s CISO and SVP. Ziv says that, when it comes to fixing code, “95% of the things” that organizations work on have “zero risk impact,” adding: “That is an insane amount of money that the organization should have spent creating a bigger gap between them and the competitors.” Managing risk is indeed a major challenge for contemporary organizations. “There's no such thing as one single application anymore,” says Rehman, who wonders: “How do you manage the inherent risk from all these components?” Ziv says the answer is about getting clients to focus on what’s critical to them. There’s a need to distinguish between vulnerability, theoretical risk and actual practical risk. What is a practical risk? It means getting clients to recognize, as an organization: “This is what I'm concerned about.” “I always tell people the risk is managed,” adds Rehman, who says that approach is underpinned by asking questions such as “What's your security posture?” and assessing a client’s risk tolerance. “You need to be smart about the investment,” says Ziv. He notes that this is where experienced leaders become practical. He gets them to answer questions like: What's exposed? What's internal? What do you want to replace first? How do we do it? Ultimately, he says, it’s getting clients to be mature enough to say that they’d focus on the “5% [of efforts] that would actually make a difference in the first year or the second year.” The trick is taking a balanced approach, and the guys bring the idea of balance into the realms of supply chain and open source. We leave you with a warning: Listening might have a serious impact on your own security posture. Click play now! Host: Kenji Ross Engineer: Kyp Pilalas Producer: Ken Gordon
The EPAM Continuum Podcast Network
When it comes to the topic of drug discovery and development, scientists are busy furrowing their lab-goggled brows trying to understand what’s real and what’s hype when it comes to the power and potential of AI. This *Resonance Test* conversation perfectly dramatizes the situation. In this episode, Emma Eng, VP of Global Data & AI, Development at Novo Nordisk, and scientist and strategist Chris Waller provide a candid view of drug development in the AI era. “We're standing on a revolution,” says Eng, reminding us that “we've done it so many other times” with the birth of the computer and the birth of the internet. It’s prudent, she cautions, not to rush to judgement guided by either zealots or skeptics. Waller says, of the articles about AI and leadership in *Harvard Business Review,* one could do “a search and replace ‘AI’ with any other technological change that's happened in the last 30 years. It's the same kind of trend and processes and characteristics that you need in your leadership to implement the technology appropriately to get the outcomes that you're looking for.” Which means, for pharma, much uncertainty and much experimentation. “I think experimentation is good,” says Eng, who then adds that we need to always keep track of what is it that we're experimenting on. She says that the word “experimentation” can “sound very fluid” but in fact, “It's a very structured process. You set up some very clear objectives and you either prove or don't prove those objectives.” Waller references the various revolutions (throughput screening, combinational chemistry, data, and analytics revolutions) that pharma has seen and says: “We've all held out hope for each and every one of these revolutions that the drug discovery process is going to be shrunk by 50% and cost half as much. And every time we turn around, it's still 12 to 15 years, $1.5 to $2 billion.” Will AI make the big difference, finally? “Maybe we need to be revolutionized as an industry,” she says. “It can be hard to make much of a difference as long as there are few big players.” Just a few big players, she says, is “the nature of pharma.” Of course, our scientists are measured in their assessments about industry change. After all, as Waller says, the systems involved—the human body, the regulatory environment, the commercial ecosystems—are all “super-complicated.” Eng notes that an important side-effect around the AI hype is corporate interest in data. “Now it's much easier to put that topic on the table saying, ‘If you want to do AI, you need to take care of your data and you need to treat it like an asset.’” Listen on as they test topics such as regional and regulatory challenges in AI adoption, change management, and future tech and long-term impact (watch out for quantum, everyone!). In the end, Eng returns to the idea of revolutions. “You think you want so much change in the beginning which you don't get because it takes time,” says Eng. This makes us underestimate what will happen later. Having such a farseeing mindset is significant, she says, because “these technology shifts will have a large impact on the long term.” Host: Alison Kotin Engineer: Kyp Pilalas Producer: Ken Gordon