Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/fa/73/f6/fa73f67e-9530-6a91-8a2c-6d9df697e861/mza_16855833443396817171.jpg/600x600bb.jpg
The Daily ML
The Daily ML
49 episodes
2 months ago
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.
Show more...
Technology
RSS
All content for The Daily ML is the property of The Daily ML and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.
Show more...
Technology
https://i1.sndcdn.com/artworks-CHiQyIMD1R1FhCDX-vfROMw-t3000x3000.jpg
Ep44. Mixtures of In-Context Learners
The Daily ML
17 minutes 37 seconds
11 months ago
Ep44. Mixtures of In-Context Learners
The provided text describes a novel approach to in-context learning (ICL) called Mixtures of In-Context Learners (MOICL) that addresses key limitations of traditional ICL, such as context length constraints and sensitivity to noisy or out-of-distribution demonstrations. MOICL partitions a set of demonstrations into subsets, trains each subset as an "expert," and learns a weighting function to combine their predictions. The authors demonstrate that MOICL outperforms traditional ICL and other baselines in classification tasks across various datasets, achieving higher accuracy while being more robust to noisy data and label imbalance. They also show that MOICL is more data and computationally efficient, making it a promising approach for improving the effectiveness of ICL.
The Daily ML
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.