This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.
All content for The Daily ML is the property of The Daily ML and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.
Ep39. Arithmetic Without Algorithms: Language Models Solve Math With a Bag of Heuristics
The Daily ML
17 minutes 7 seconds
12 months ago
Ep39. Arithmetic Without Algorithms: Language Models Solve Math With a Bag of Heuristics
This research investigates how large language models (LLMs) perform arithmetic tasks. The authors find that LLMs do not rely on robust algorithms or memorization but instead use a "bag of heuristics," a collection of simple, memorized rules, to solve arithmetic problems. They identify a specific set of neurons in the LLMs that implement these heuristics and analyze how they develop over the course of training. Their findings suggest that improving LLMs' mathematical abilities may require fundamental changes to training and architecture rather than relying on post-hoc techniques.
The Daily ML
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.