Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/fa/73/f6/fa73f67e-9530-6a91-8a2c-6d9df697e861/mza_16855833443396817171.jpg/600x600bb.jpg
The Daily ML
The Daily ML
49 episodes
2 months ago
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.
Show more...
Technology
RSS
All content for The Daily ML is the property of The Daily ML and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.
Show more...
Technology
https://i1.sndcdn.com/artworks-CHiQyIMD1R1FhCDX-vfROMw-t3000x3000.jpg
Ep35. What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
The Daily ML
17 minutes 14 seconds
1 year ago
Ep35. What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
This paper provides a comprehensive review of document parsing, a field focused on converting unstructured and semi-structured documents into structured, machine-readable data. It explores two main approaches: modular pipeline systems and end-to-end models based on large vision-language models. The paper examines the core components of document parsing, including layout detection, content extraction (text, tables, mathematical expressions), and relation integration, as well as the challenges each approach faces. The authors provide an overview of key methodologies, datasets, evaluation metrics, and open-source tools, ultimately emphasizing the need for further research and development to advance the field.
The Daily ML
This research paper examines the impact of an artificial intelligence tool for materials discovery on the productivity and performance of scientists working in a large U.S. firm's R&D lab. The study exploits a randomized rollout of the AI tool across teams of scientists, allowing the researchers to draw causal inferences about the effects of the technology. The paper demonstrates that the AI tool significantly increases the rate of materials discovery, patent filings, and product innovation, but these benefits are unequally distributed among scientists. The researchers find that the AI tool is most beneficial to scientists with strong judgment skills, which involve the ability to evaluate and prioritize AI-generated candidate compounds. The study also reveals that the AI tool automates a significant portion of idea generation tasks, resulting in a reallocation of scientist labor towards judgment tasks. This reallocation, along with the increased demand for judgment skills, explains the heterogeneous impact of the AI tool on scientific performance.