Professor Pam Silver from Harvard Medical School joins us as a founding figure and legend in synthetic biology whose scientific path led from pioneering work on nuclear localization to co-developing the revolutionary "bionic leaf"—a system that combines artificial catalysts with bacteria to convert sunlight and CO2 into fuels and compounds at efficiencies far exceeding natural photosynthesis. Silver's perspective on synthetic biology's evolution from theoretical explorations to real-world app...
All content for The Climate Biotech Podcast is the property of Homeworld Collective and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Professor Pam Silver from Harvard Medical School joins us as a founding figure and legend in synthetic biology whose scientific path led from pioneering work on nuclear localization to co-developing the revolutionary "bionic leaf"—a system that combines artificial catalysts with bacteria to convert sunlight and CO2 into fuels and compounds at efficiencies far exceeding natural photosynthesis. Silver's perspective on synthetic biology's evolution from theoretical explorations to real-world app...
Textile-immobilized Enzymes for CO2 Capture with Sonja Salmon
The Climate Biotech Podcast
57 minutes
2 months ago
Textile-immobilized Enzymes for CO2 Capture with Sonja Salmon
Sonja Salmon takes us on a fascinating journey through her 20-year quest to harness the power of enzymes and textiles to fight climate change. Her background in textile chemistry led to a deep understanding of natural polymers like cellulose and chitosan, which eventually connected to her fascination with enzymes during a 22-year career at the world's largest industrial enzyme company. The heart of Salmon's innovation lies in immobilizing carbonic anhydrase. This remarkably fast enzyme conve...
The Climate Biotech Podcast
Professor Pam Silver from Harvard Medical School joins us as a founding figure and legend in synthetic biology whose scientific path led from pioneering work on nuclear localization to co-developing the revolutionary "bionic leaf"—a system that combines artificial catalysts with bacteria to convert sunlight and CO2 into fuels and compounds at efficiencies far exceeding natural photosynthesis. Silver's perspective on synthetic biology's evolution from theoretical explorations to real-world app...