Home
Categories
EXPLORE
History
True Crime
Society & Culture
News
Education
Comedy
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Loading...
0:00 / 0:00
Podjoint Logo
FR
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts116/v4/b0/ea/a7/b0eaa7ff-d116-a232-0889-5076f665179d/mza_17263211783617196594.jpg/600x600bb.jpg
Stanford MLSys Seminar
Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré
24 episodes
5 days ago
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
RSS
All content for Stanford MLSys Seminar is the property of Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/production/podcast_uploaded_nologo400/20680941/20680941-1641609936241-adeced5f38a5d.jpg
#62 Dan Fu - Improving Transfer and Robustness of Supervised Contrastive Learning
Stanford MLSys Seminar
56 minutes 52 seconds
3 years ago
#62 Dan Fu - Improving Transfer and Robustness of Supervised Contrastive Learning

Dan Fu - An ideal learned representation should display transferability and robustness. Supervised contrastive learning is a promising method for training accurate models, but produces representations that do not capture these properties due to class collapse -- when all points in a class map to the same representation. In this talk, we discuss how to alleviate these problems to improve the geometry of supervised contrastive learning. We identify two key principles: balancing the right amount of geometric "spread" in the embedding space, and inducing an inductive bias towards subclass clustering. We introduce two mechanisms for achieving these aims in supervised contrastive learning, and show that doing so improves transfer learning and worst-group robustness. Next, we show how we can apply these insights to improve entity retrieval in open-domain NLP tasks (e.g., QA, search). We present a new method, TABi, that trains bi-encoders with a type-aware supervised contrastive loss and improves long-tailed entity retrieval.

Stanford MLSys Seminar
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ