Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts116/v4/b0/ea/a7/b0eaa7ff-d116-a232-0889-5076f665179d/mza_17263211783617196594.jpg/600x600bb.jpg
Stanford MLSys Seminar
Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré
24 episodes
4 days ago
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
RSS
All content for Stanford MLSys Seminar is the property of Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/production/podcast_uploaded_nologo400/20680941/20680941-1641609936241-adeced5f38a5d.jpg
2/24/22 #56 Fait Poms - Interactive Model Development
Stanford MLSys Seminar
55 minutes 54 seconds
3 years ago
2/24/22 #56 Fait Poms - Interactive Model Development

Fait Poms - A vision for interactive model development: efficient machine learning by bringing domain experts in the loop

Building computer vision models today is an exercise in patience--days to weeks for human annotators to label data, hours to days to train and evaluate models, weeks to months of iteration to reach a production model. Without tolerance for this timeline or access to the massive compute and human resources required, building an accurate model can be challenging if not impossible. In this talk, we discuss a vision for interactive model development with iteration cycles of minutes, not weeks. We believe the key to this is integrating the domain expert at key points in the model building cycle and leveraging supervision cues above just example-level annotation. We will discuss our recent progress toward aspects of this goal: judiciously choosing when to use the machine and when to use the domain expert for fast, low label budget model training (CVPR 2021, ICCV 2021), building confidence in model performance with low-shot validation (ICCV 2021 Oral), and some initial tools for rapidly defining correctness criteria.

Stanford MLSys Seminar
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ