Home
Categories
EXPLORE
True Crime
Comedy
Business
Society & Culture
History
Sports
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/99/51/c4/9951c4b8-10d1-13ed-c2a1-7aa35341b20e/mza_16804603709208138720.jpg/600x600bb.jpg
Recsperts - Recommender Systems Experts
Marcel Kurovski
30 episodes
1 month ago
Recommender Systems are the most challenging, powerful and ubiquitous area of machine learning and artificial intelligence. This podcast hosts the experts in recommender systems research and application. From understanding what users really want to driving large-scale content discovery - from delivering personalized online experiences to catering to multi-stakeholder goals. Guests from industry and academia share how they tackle these and many more challenges. With Recsperts coming from universities all around the globe or from various industries like streaming, ecommerce, news, or social media, this podcast provides depth and insights. We go far beyond your 101 on RecSys and the shallowness of another matrix factorization based rating prediction blogpost! The motto is: be relevant or become irrelevant! Expect a brand-new interview each month and follow Recsperts on your favorite podcast player.
Show more...
Technology
Science,
Mathematics
RSS
All content for Recsperts - Recommender Systems Experts is the property of Marcel Kurovski and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Recommender Systems are the most challenging, powerful and ubiquitous area of machine learning and artificial intelligence. This podcast hosts the experts in recommender systems research and application. From understanding what users really want to driving large-scale content discovery - from delivering personalized online experiences to catering to multi-stakeholder goals. Guests from industry and academia share how they tackle these and many more challenges. With Recsperts coming from universities all around the globe or from various industries like streaming, ecommerce, news, or social media, this podcast provides depth and insights. We go far beyond your 101 on RecSys and the shallowness of another matrix factorization based rating prediction blogpost! The motto is: be relevant or become irrelevant! Expect a brand-new interview each month and follow Recsperts on your favorite podcast player.
Show more...
Technology
Science,
Mathematics
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/99/51/c4/9951c4b8-10d1-13ed-c2a1-7aa35341b20e/mza_16804603709208138720.jpg/600x600bb.jpg
#23: Generative Models for Recommender Systems with Yashar Deldjoo
Recsperts - Recommender Systems Experts
1 hour 54 minutes
1 year ago
#23: Generative Models for Recommender Systems with Yashar Deldjoo

In episode 23 of Recsperts, we welcome Yashar Deldjoo, Assistant Professor at the Polytechnic University of Bari, Italy. Yashar's research on recommender systems includes multimodal approaches, multimedia recommender systems as well as trustworthiness and adversarial robustness, where he has published a lot of work. We discuss the evolution of generative models for recommender systems, modeling paradigms, scenarios as well as their evaluation, risks and harms.

We begin our interview with a reflection of Yashar's areas of recommender systems research so far. Starting with multimedia recsys, particularly video recommendations, Yashar covers his work around adversarial robustness and trustworthiness leading to the main topic for this episode: generative models for recommender systems. We learn about their aspects for improving beyond the (partially saturated) state of traditional recommender systems: improve effectiveness and efficiency for top-n recommendations, introduce interactivity beyond classical conversational recsys, provide personalized zero- or few-shot recommendations.
We learn about the modeling paradigms and as well about the scenarios for generative models which mainly differ by input and modelling approach: ID-based, text-based, and multimodal generative models. This is how we navigate the large field of acronyms leading us from VAEs and GANs to LLMs.


Towards the end of the episode, we also touch on the evaluation, opportunities, risks and harms of generative models for recommender systems. Yashar also provides us with an ample amount of references and upcoming events where people get the chance to know more about GenRecSys.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:58) - About Yashar Deldjoo
  • (09:34) - Motivation for RecSys
  • (13:05) - Intro to Generative Models for Recommender Systems
  • (44:27) - Modeling Paradigms for Generative Models
  • (51:33) - Scenario 1: Interaction-Driven Recommendation
  • (57:59) - Scenario 2: Text-based Recommendation
  • (01:10:39) - Scenario 3: Multimodal Recommendation
  • (01:24:59) - Evaluation of Impact and Harm
  • (01:38:07) - Further Research Challenges
  • (01:45:03) - References and Research Advice
  • (01:49:39) - Closing Remarks

Links from the Episode:
  • Yashar Deldjoo on LinkedIn
  • Yashar's Website
  • KDD 2024 Tutorial: Modern Recommender Systems Leveraging Generative AI: Fundamentals, Challenges and Opportunities
  • RecSys 2024 Workshop: The 1st Workshop on Risks, Opportunities, and Evaluation of Generative Models in Recommender Systems (ROEGEN@RECSYS'24)

Papers:

  • Deldjoo et al. (2024): A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys)
  • Deldjoo et al. (2020): Recommender Systems Leveraging Multimedia Content
  • Deldjoo et al. (2021): A Survey on Adversarial Recommender Systems: From Attack/Defense Strategies to Generative Adversarial Networks
  • Deldjoo et al. (2020): How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models
  • Liang et al. (2018): Variational Autoencoders for Collaborative Filtering
  • He et al. (2016): Visual Bayesian Personalized Ranking from Implicit Feedback

General Links:

  • Follow me on LinkedIn
  • Follow me on X
  • Send me your comments, questions and suggestions to marcel.kurovski@gmail.com
  • Recsperts Website
Recsperts - Recommender Systems Experts
Recommender Systems are the most challenging, powerful and ubiquitous area of machine learning and artificial intelligence. This podcast hosts the experts in recommender systems research and application. From understanding what users really want to driving large-scale content discovery - from delivering personalized online experiences to catering to multi-stakeholder goals. Guests from industry and academia share how they tackle these and many more challenges. With Recsperts coming from universities all around the globe or from various industries like streaming, ecommerce, news, or social media, this podcast provides depth and insights. We go far beyond your 101 on RecSys and the shallowness of another matrix factorization based rating prediction blogpost! The motto is: be relevant or become irrelevant! Expect a brand-new interview each month and follow Recsperts on your favorite podcast player.