Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/2a/0b/d8/2a0bd8b4-8126-d0f9-44f3-96a7dca35b62/mza_14367337014177721493.jpg/600x600bb.jpg
Quantum Computing 101
Inception Point Ai
195 episodes
2 days ago
This is your Quantum Computing 101 podcast.

Quantum Computing 101 is your daily dose of the latest breakthroughs in the fascinating world of quantum research. This podcast dives deep into fundamental quantum computing concepts, comparing classical and quantum approaches to solve complex problems. Each episode offers clear explanations of key topics such as qubits, superposition, and entanglement, all tied to current events making headlines. Whether you're a seasoned enthusiast or new to the field, Quantum Computing 101 keeps you informed and engaged with the rapidly evolving quantum landscape. Tune in daily to stay at the forefront of quantum innovation!

For more info go to

https://www.quietplease.ai

Check out these deals https://amzn.to/48MZPjs
Show more...
Technology
News,
Tech News
RSS
All content for Quantum Computing 101 is the property of Inception Point Ai and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
This is your Quantum Computing 101 podcast.

Quantum Computing 101 is your daily dose of the latest breakthroughs in the fascinating world of quantum research. This podcast dives deep into fundamental quantum computing concepts, comparing classical and quantum approaches to solve complex problems. Each episode offers clear explanations of key topics such as qubits, superposition, and entanglement, all tied to current events making headlines. Whether you're a seasoned enthusiast or new to the field, Quantum Computing 101 keeps you informed and engaged with the rapidly evolving quantum landscape. Tune in daily to stay at the forefront of quantum innovation!

For more info go to

https://www.quietplease.ai

Check out these deals https://amzn.to/48MZPjs
Show more...
Technology
News,
Tech News
https://d3wo5wojvuv7l.cloudfront.net/t_rss_itunes_square_1400/images.spreaker.com/original/7304a291772042dc1e0520de465d61ea.jpg
Quantum-Classical Fusion: Hybrid Architectures Accelerate Breakthroughs | Quantum Computing 101
Quantum Computing 101
3 minutes
3 weeks ago
Quantum-Classical Fusion: Hybrid Architectures Accelerate Breakthroughs | Quantum Computing 101
This is your Quantum Computing 101 podcast.

The news electrified my office this morning—the hum of quantum processors was practically drowned out by headlines of the latest hybrid solution poised to bridge quantum and classical computing once more. I’m Leo, Learning Enhanced Operator, and you’re listening to Quantum Computing 101.

Let’s cut right into what’s making my qubits tingle with excitement: the new hybrid architectures that go beyond theoretical promise, shaping real technological inflection points. This week, Diraq and Quantum Machines pulled off what many called impossible just months ago: a genuinely integrated quantum-classical architecture, centered on the NVIDIA DGX Quantum platform. Picture this—blindingly fast CPUs and GPUs, cradled with a quantum processing unit, linked over an ultra-low-latency interconnect that shaves response times to under 4 microseconds. It’s like having a conversation with the quantum world in real time, each decision echoing back before decoherence has a chance to intervene.

As a quantum specialist, I see it as choreographing a ballet where classical and quantum dancers switch seamlessly mid-performance. In these new experiments, classical reinforcement learning re-tunes quantum experiments as they happen. The result? Keeping fragile quantum states, like three-qubit GHZ states, perfectly orchestrated—using machine learning models that auto-correct drift, noise, and error in the same breath as the quantum calculation. This isn’t merely theoretical optimization. Early reports show hybrid workflows accelerating calibration, feedback, even quantum error mitigation, all within the fleeting windows where qubits remain coherent. It’s dramatic, it’s immediate, and it’s the future—right now.

There’s more: just published is a framework called hybrid sequential quantum computing. Think of it as a relay race for algorithms. Classical optimizers sprint the first lap, rapidly sifting through a mountainous problem space. As they tire, quantum processors leap in, tunneling through the most stubborn local minima—just as John Clarke, Michel Devoret, and John Martinis, this year’s Nobel Prize laureates, once envisioned in their pioneering work on quantum tunneling. When quantum hardware can’t quite cross the finish line—thanks to decoherence or hardware noise—a third lap of classical refinement closes the gap, guaranteeing the best performance in speed and solution quality. On advanced superconducting processors, this yields runtime improvements up to two orders of magnitude over classical solvers in complex optimization tasks.

The world outside may credit the International Year of Quantum Science for today’s fever pitch of innovation, but here in the lab, I see it as a manifestation of quantum-classical complementarity. Hybrids fuse the raw pattern-finding power of classical AI with quantum’s uncanny ability to breach what once seemed computationally insurmountable.

If you have burning questions or topics you’d love featured, email me at leo@inceptionpoint.ai. Make sure to subscribe to Quantum Computing 101, and remember, this has been a Quiet Please Production. For more, check out quiet please dot AI.

For more http://www.quietplease.ai


Get the best deals https://amzn.to/3ODvOta

This content was created in partnership and with the help of Artificial Intelligence AI
Quantum Computing 101
This is your Quantum Computing 101 podcast.

Quantum Computing 101 is your daily dose of the latest breakthroughs in the fascinating world of quantum research. This podcast dives deep into fundamental quantum computing concepts, comparing classical and quantum approaches to solve complex problems. Each episode offers clear explanations of key topics such as qubits, superposition, and entanglement, all tied to current events making headlines. Whether you're a seasoned enthusiast or new to the field, Quantum Computing 101 keeps you informed and engaged with the rapidly evolving quantum landscape. Tune in daily to stay at the forefront of quantum innovation!

For more info go to

https://www.quietplease.ai

Check out these deals https://amzn.to/48MZPjs