Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts4/v4/88/b7/19/88b719de-99cc-b7fd-beb4-769ddf9e4202/mza_3669066249670647666.jpg/600x600bb.jpg
Publications on self-organizing networked systems
Lakeside Labs
93 episodes
4 months ago
Abstract—We present and evaluate new ROS packages for coordinated multi-robot exploration, namely communication, global map construction, and exploration. The packages allow completely distributed control and do not rely on (but allow) central controllers. Their integration including application layer protocols allows out of the box installation and execution. The communication package enables reliable ad hoc communication allowing to exchange local maps between robots which are merged to a global map. Exploration uses the global map to spatially spread robots and decrease exploration time. The intention of the implementation is to offer basic functionality for coordinated multi-robot systems and to enable other research groups to experimentally work on multi-robot systems. The packages are tested in real-world experiments using Turtlebot and Pioneer robots. Further, we analyze their performance using simulations and verify their correct working.
Show more...
Courses
Education,
Technology,
Tech News,
Natural Sciences
RSS
All content for Publications on self-organizing networked systems is the property of Lakeside Labs and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Abstract—We present and evaluate new ROS packages for coordinated multi-robot exploration, namely communication, global map construction, and exploration. The packages allow completely distributed control and do not rely on (but allow) central controllers. Their integration including application layer protocols allows out of the box installation and execution. The communication package enables reliable ad hoc communication allowing to exchange local maps between robots which are merged to a global map. Exploration uses the global map to spatially spread robots and decrease exploration time. The intention of the implementation is to offer basic functionality for coordinated multi-robot systems and to enable other research groups to experimentally work on multi-robot systems. The packages are tested in real-world experiments using Turtlebot and Pioneer robots. Further, we analyze their performance using simulations and verify their correct working.
Show more...
Courses
Education,
Technology,
Tech News,
Natural Sciences
https://is1-ssl.mzstatic.com/image/thumb/Podcasts4/v4/88/b7/19/88b719de-99cc-b7fd-beb4-769ddf9e4202/mza_3669066249670647666.jpg/600x600bb.jpg
EvoNILM - Evolutionary Appliance Detection for MiscellaneousHousehold Appliances
Publications on self-organizing networked systems
11 years ago
EvoNILM - Evolutionary Appliance Detection for MiscellaneousHousehold Appliances
To improve the energy awareness of consumers, it is necessary to provide them with information about their en- ergy demand, not just on the household level. Non-intrusive load monitoring (NILM) gives the consumer the opportunity to disaggregate their consumed power on the appliance level. The consumer is provided with information about the energy de- mand of each individual appliances. In this paper we present an evolutionary optimization algorithm, applicable to NILM purposes. It can be used to detect appliances with a prob- abilistic power demand model. We show that the detection performance of the evolutionary algorithm can be improved if the single population approach of the evolutionary algorithm is replaced by a parallel population approach with individual exchange and by the introduction of application-oriented pre- processing and mutation methods. The proposed algorithm is tested with Matlab simulations and is evaluated according to the fitness reached and detection probability of the algorithm.
Publications on self-organizing networked systems
Abstract—We present and evaluate new ROS packages for coordinated multi-robot exploration, namely communication, global map construction, and exploration. The packages allow completely distributed control and do not rely on (but allow) central controllers. Their integration including application layer protocols allows out of the box installation and execution. The communication package enables reliable ad hoc communication allowing to exchange local maps between robots which are merged to a global map. Exploration uses the global map to spatially spread robots and decrease exploration time. The intention of the implementation is to offer basic functionality for coordinated multi-robot systems and to enable other research groups to experimentally work on multi-robot systems. The packages are tested in real-world experiments using Turtlebot and Pioneer robots. Further, we analyze their performance using simulations and verify their correct working.