Inhalt der Vorlesung:
- Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit, Berechnungskomplexität, 'schwere' Probleme, O-Notation, Mastertheorem
- Alphabete, Wörter, formale Sprachen, endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion, Hüllenbildung
- Relationen und Funktionen
- Graphen
- Syntax und Semantik für Aussagenlogik
Weiterführende Literatur
- Goos: Vorlesungen über Informatik, Band 1, Springer, 2005
- Abeck: Kursbuch Informatik I, Universitätsverlag Karlsruhe, 2005
Ziel:
Der/die Studierende soll
- grundlegende Definitionsmethoden erlernen und in die Lage versetzt werden, entsprechende Definitionen zu lesen und zu verstehen.
- den Unterschied zwischen Syntax und Semantik kennen.
- die grundlegenden Begriffe aus diskreter Mathematik und Informatik kennen und die Fähigkeit haben, sie im Zusammenhang mit der Beschreibung von Problemen und Beweisen anzuwenden.
Dozent: Dr. Sebastian Stüker | Karlsruher Institut für Technologie (KIT), Institut für Anthropomatik und Robotik |
Vorlesungsaufzeichnung: http://webcast.kit.edu
All content for Parallele Algorithmen, Vorlesung, WS17/18 is the property of Karlsruher Institut für Technologie (KIT) and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Inhalt der Vorlesung:
- Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit, Berechnungskomplexität, 'schwere' Probleme, O-Notation, Mastertheorem
- Alphabete, Wörter, formale Sprachen, endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion, Hüllenbildung
- Relationen und Funktionen
- Graphen
- Syntax und Semantik für Aussagenlogik
Weiterführende Literatur
- Goos: Vorlesungen über Informatik, Band 1, Springer, 2005
- Abeck: Kursbuch Informatik I, Universitätsverlag Karlsruhe, 2005
Ziel:
Der/die Studierende soll
- grundlegende Definitionsmethoden erlernen und in die Lage versetzt werden, entsprechende Definitionen zu lesen und zu verstehen.
- den Unterschied zwischen Syntax und Semantik kennen.
- die grundlegenden Begriffe aus diskreter Mathematik und Informatik kennen und die Fähigkeit haben, sie im Zusammenhang mit der Beschreibung von Problemen und Beweisen anzuwenden.
Dozent: Dr. Sebastian Stüker | Karlsruher Institut für Technologie (KIT), Institut für Anthropomatik und Robotik |
Vorlesungsaufzeichnung: http://webcast.kit.edu
13 |
0:00:00 Starten
0:00:36 Was wissen wir über die Jobs?
0:02:32 Was wissen wir über die Prozessoren?
0:05:44 Zufälliges Zuordnen
0:07:08 Work Stealing
0:10:58 Backtracking over Transition Functions
0:12:02 An Abstract Model: Tree Shaped Computations
0:17:37 Splitting Stacks
0:21:27 Other Problem Categories
0:27:01 Limits of the Model
0:29:35 Receiver Initiated Load Balancing
0:31:40 Random Polling
0:41:11 Synchronous Random Polling
0:45:21 Analysis
0:51:22 Bounding Idleness
0:57:08 A Simplified Algorithm
1:03:22 Many Consecutive Splits
1:05:49 Many Processors
1:09:03 Superliner Speedup
1:15:12 Static vs Dynamic LB
1:18:35 MapReduce in 10 Minutes
Parallele Algorithmen, Vorlesung, WS17/18
Inhalt der Vorlesung:
- Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit, Berechnungskomplexität, 'schwere' Probleme, O-Notation, Mastertheorem
- Alphabete, Wörter, formale Sprachen, endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion, Hüllenbildung
- Relationen und Funktionen
- Graphen
- Syntax und Semantik für Aussagenlogik
Weiterführende Literatur
- Goos: Vorlesungen über Informatik, Band 1, Springer, 2005
- Abeck: Kursbuch Informatik I, Universitätsverlag Karlsruhe, 2005
Ziel:
Der/die Studierende soll
- grundlegende Definitionsmethoden erlernen und in die Lage versetzt werden, entsprechende Definitionen zu lesen und zu verstehen.
- den Unterschied zwischen Syntax und Semantik kennen.
- die grundlegenden Begriffe aus diskreter Mathematik und Informatik kennen und die Fähigkeit haben, sie im Zusammenhang mit der Beschreibung von Problemen und Beweisen anzuwenden.
Dozent: Dr. Sebastian Stüker | Karlsruher Institut für Technologie (KIT), Institut für Anthropomatik und Robotik |
Vorlesungsaufzeichnung: http://webcast.kit.edu