Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
Papers Read on AI
Rob
200 episodes
9 months ago
Show more...
Tech News
News
RSS
All content for Papers Read on AI is the property of Rob and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Show more...
Tech News
News
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases
Papers Read on AI
32 minutes 59 seconds
1 year ago
ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases
Enabling large language models to utilize real-world tools effectively is crucial for achieving embodied intelligence. Existing approaches to tool learning have either primarily relied on extremely large language models, such as GPT-4, to attain generalized tool-use abilities in a zero-shot manner, or utilized supervised learning to train limited scopes of tools on compact models. However, it remains uncertain whether smaller language models can achieve generalized tool-use abilities without tool-specific training. To address this question, this paper introduces ToolAlpaca, a novel framework designed to automatically generate a diverse tool-use corpus and learn generalized tool-use abilities on compact language models with minimal human intervention. Specifically, ToolAlpaca first automatically creates a highly diversified tool-use corpus by building a multi-agent simulation environment. The corpus contains 3938 tool-use instances from more than 400 real-world tool APIs spanning 50 distinct categories. Subsequently, the constructed corpus is employed to fine-tune compact language models, resulting in two models, namely ToolAlpaca-7B and ToolAlpaca-13B, respectively. Finally, we evaluate the ability of these models to utilize previously unseen tools without specific training. Experimental results demonstrate that ToolAlpaca achieves effective generalized tool-use capabilities comparable to those of extremely large language models like GPT-3.5, demonstrating that learning generalized tool-use ability is feasible for compact language models.2023: Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, Le Sunhttps://arxiv.org/pdf/2306.05301
Papers Read on AI