Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
Papers Read on AI
Rob
200 episodes
9 months ago
Show more...
Tech News
News
RSS
All content for Papers Read on AI is the property of Rob and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Show more...
Tech News
News
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
On the Diagram of Thought
Papers Read on AI
17 minutes 27 seconds
1 year ago
On the Diagram of Thought
We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs) as the construction of a directed acyclic graph (DAG) within a single model. Unlike traditional approaches that represent reasoning as linear chains or trees, DoT organizes propositions, critiques, refinements, and verifications into a cohesive DAG structure, allowing the model to explore complex reasoning pathways while maintaining logical consistency. Each node in the diagram corresponds to a proposition that has been proposed, critiqued, refined, or verified, enabling the LLM to iteratively improve its reasoning through natural language feedback. By leveraging auto-regressive next-token prediction with role-specific tokens, DoT facilitates seamless transitions between proposing ideas and critically evaluating them, providing richer feedback than binary signals. Furthermore, we formalize the DoT framework using Topos Theory, providing a mathematical foundation that ensures logical consistency and soundness in the reasoning process. This approach enhances both the training and inference processes within a single LLM, eliminating the need for multiple models or external control mechanisms. DoT offers a conceptual framework for designing next-generation reasoning-specialized models, emphasizing training efficiency, robust reasoning capabilities, and theoretical grounding. The code is available at https://github.com/diagram-of-thought/diagram-of-thought.2024: Yifan Zhang, Yang Yuan, Andrew Chi-Chih Yaohttps://arxiv.org/pdf/2409.10038v1
Papers Read on AI