Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
Papers Read on AI
Rob
200 episodes
9 months ago
Show more...
Tech News
News
RSS
All content for Papers Read on AI is the property of Rob and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Show more...
Tech News
News
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
LightRAG: Simple and Fast Retrieval-Augmented Generation
Papers Read on AI
37 minutes 42 seconds
1 year ago
LightRAG: Simple and Fast Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources, enabling more accurate and contextually relevant responses tailored to user needs. However, existing RAG systems have significant limitations, including reliance on flat data representations and inadequate contextual awareness, which can lead to fragmented answers that fail to capture complex inter-dependencies. To address these challenges, we propose LightRAG, which incorporates graph structures into text indexing and retrieval processes. This innovative framework employs a dual-level retrieval system that enhances comprehensive information retrieval from both low-level and high-level knowledge discovery. Additionally, the integration of graph structures with vector representations facilitates efficient retrieval of related entities and their relationships, significantly improving response times while maintaining contextual relevance. This capability is further enhanced by an incremental update algorithm that ensures the timely integration of new data, allowing the system to remain effective and responsive in rapidly changing data environments. Extensive experimental validation demonstrates considerable improvements in retrieval accuracy and efficiency compared to existing approaches. We have made our LightRAG open-source and available at the link: https://github.com/HKUDS/LightRAG.2024: Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, Chao Huanghttps://arxiv.org/pdf/2410.05779
Papers Read on AI