Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
Papers Read on AI
Rob
200 episodes
9 months ago
Show more...
Tech News
News
RSS
All content for Papers Read on AI is the property of Rob and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Show more...
Tech News
News
https://is1-ssl.mzstatic.com/image/thumb/Podcasts122/v4/4d/47/13/4d4713e0-6426-dc3c-3f11-8b211cdac7aa/mza_307848951373462473.png/600x600bb.jpg
F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
Papers Read on AI
35 minutes 59 seconds
1 year ago
F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
This paper introduces F5-TTS, a fully non-autoregressive text-to-speech system based on flow matching with Diffusion Transformer (DiT). Without requiring complex designs such as duration model, text encoder, and phoneme alignment, the text input is simply padded with filler tokens to the same length as input speech, and then the denoising is performed for speech generation, which was originally proved feasible by E2 TTS. However, the original design of E2 TTS makes it hard to follow due to its slow convergence and low robustness. To address these issues, we first model the input with ConvNeXt to refine the text representation, making it easy to align with the speech. We further propose an inference-time Sway Sampling strategy, which significantly improves our model's performance and efficiency. This sampling strategy for flow step can be easily applied to existing flow matching based models without retraining. Our design allows faster training and achieves an inference RTF of 0.15, which is greatly improved compared to state-of-the-art diffusion-based TTS models. Trained on a public 100K hours multilingual dataset, our Fairytaler Fakes Fluent and Faithful speech with Flow matching (F5-TTS) exhibits highly natural and expressive zero-shot ability, seamless code-switching capability, and speed control efficiency. Demo samples can be found at https://SWivid.github.io/F5-TTS. We release all code and checkpoints to promote community development.2024: Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, Xie Chenhttps://arxiv.org/pdf/2410.06885
Papers Read on AI