Cracking tales of historical mathematics and its interplay with science, philosophy, and culture. Revisionist history galore. Contrarian takes on received wisdom. Implications for teaching. Informed by current scholarship. By Dr Viktor Blåsjö.
All content for Opinionated History of Mathematics is the property of Intellectual Mathematics and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Cracking tales of historical mathematics and its interplay with science, philosophy, and culture. Revisionist history galore. Contrarian takes on received wisdom. Implications for teaching. Informed by current scholarship. By Dr Viktor Blåsjö.
The etymology of the term “postulate” suggests that Euclid’s axioms were once questioned. Indeed, the drawing of lines and circles can be regarded as depending on motion, which is supposedly proved impossible by Zeno’s paradoxes. Although whether these postulates correspond to ruler and compass or not is debatable, especially since Euclid seems to restrict himself to a “collapsible” compass in Proposition 2. Furthermore, why did Euclid feel the need to postulate that “all right angles are equal”? Perhaps in order to rule out non-flat surfaces such as cones.
Opinionated History of Mathematics
Cracking tales of historical mathematics and its interplay with science, philosophy, and culture. Revisionist history galore. Contrarian takes on received wisdom. Implications for teaching. Informed by current scholarship. By Dr Viktor Blåsjö.