Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
News
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/84/ef/0e/84ef0e89-af5f-476b-5046-ff3d99a35ac3/mza_4786384072714074999.jpg/600x600bb.jpg
Oncotarget
Oncotarget Podcast
500 episodes
4 days ago
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels. However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance. Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/ Paper DOI - https://doi.org/10.18632/oncotarget.28750 Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
RSS
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels. However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance. Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/ Paper DOI - https://doi.org/10.18632/oncotarget.28750 Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
https://i1.sndcdn.com/artworks-ZzEgQnyk5O4EPH3W-cK33Ug-t3000x3000.png
Wafik S. El-Deiry Chairs 2025 WIN Symposium in Collaboration with APM in Philadelphia
Oncotarget
3 minutes 50 seconds
1 month ago
Wafik S. El-Deiry Chairs 2025 WIN Symposium in Collaboration with APM in Philadelphia
BUFFALO, NY - October 1, 2025 – Oncotarget is proud to announce that its Editor-in-Chief, Wafik S. El-Deiry, MD, PhD, FACP, will chair the WIN Symposium as the Oncology Track of the Advancing Precision Medicine (APM) Annual Conference held October 3–4, 2025, at the Pennsylvania Convention Center in Philadelphia. The WIN Consortium annual symposium featured as the Oncology Track of the APM Annual Conference 2025 unites global leaders in oncology, translational science, and precision medicine. This year’s program features keynote lectures, multi-track sessions– WIN Symposium, Multi-Omics Integration and Precision Medicine Outside of Oncology– and networking opportunities designed to accelerate the translation of research into clinical practice. Highlights include: --A keynote at opening of the WIN Symposium in Philadelphia by William G. Kaelin, Jr., MD — 2019 Nobel Laureate. --Other luminaries in Oncology are speaking, including AACR President Lillian Siu, MD and AACR President-Elect Keith Flaherty, MD along with internationally recognized leaders in precision oncology. --A world-class precision oncology molecular tumor board and oral presentations from the most competitive abstracts are part of the program. --Multi-omics and disease-specific tracks spanning oncology, neurology, cardiovascular disease, rare disease, and infectious disease. --Opportunities for collaboration among scientists, clinicians, industry innovators, and policymakers. Registration is still open. Attendance is free for students, academic/government/non-profit participants, healthcare providers, and investors. The event provides CME credits. For full program details, visit the APM Annual Conference website. About WIN Consortium: WIN Consortium is a non-profit association headquartered in France. WIN was the first consortium that assembled all stakeholders of cancer care, from academia, industry, and patient advocates to work together across the globe. The WIN network assembles 34 world-class academic medical centers, industries, research organizations and patient advocates spanning 18 countries and 5 continents, aligned to launch trials to bolster Precision Oncology across the world. It was also the first organization to launch a N-of-One study using transcriptomics in addition to genomics to inform therapeutic choice in the WINTHER study. WIN is the organizer of the WIN symposia in Precision Oncology. To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh
Oncotarget
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels. However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance. Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/ Paper DOI - https://doi.org/10.18632/oncotarget.28750 Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM