Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels.
However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance.
Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/
Paper DOI - https://doi.org/10.18632/oncotarget.28750
Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu
Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc
Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750
Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/
Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate
To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us:
Facebook - https://www.facebook.com/Oncotarget/
X - https://twitter.com/oncotarget
Instagram - https://www.instagram.com/oncotargetjrnl/
YouTube - https://www.youtube.com/@OncotargetJournal
LinkedIn - https://www.linkedin.com/company/oncotarget
Pinterest - https://www.pinterest.com/oncotarget/
Reddit - https://www.reddit.com/user/Oncotarget/
Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh
MEDIA@IMPACTJOURNALS.COM
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels.
However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance.
Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/
Paper DOI - https://doi.org/10.18632/oncotarget.28750
Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu
Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc
Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750
Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/
Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate
To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us:
Facebook - https://www.facebook.com/Oncotarget/
X - https://twitter.com/oncotarget
Instagram - https://www.instagram.com/oncotargetjrnl/
YouTube - https://www.youtube.com/@OncotargetJournal
LinkedIn - https://www.linkedin.com/company/oncotarget
Pinterest - https://www.pinterest.com/oncotarget/
Reddit - https://www.reddit.com/user/Oncotarget/
Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh
MEDIA@IMPACTJOURNALS.COM
New Insights into HER2-Mutated Non-Small Cell Lung Cancer in Brazil
Oncotarget
5 minutes 1 second
1 month ago
New Insights into HER2-Mutated Non-Small Cell Lung Cancer in Brazil
Lung cancer remains one of the leading causes of cancer-related deaths worldwide. Although precision medicine has improved outcomes for many patients, certain rare genetic mutations are still poorly understood, particularly in regions with limited access to genomic testing. Such mutations involve the HER2 gene, better known for its role in breast cancer but also implicated in a small subset of lung cancers.
HER2 mutations are found in approximately 2–4% of non-small cell lung cancer (NSCLC) cases and create unique challenges. These tumors can vary significantly in how they appear under a microscope and in how they respond to treatment. Adding to the complexity, most diagnostic and treatment guidelines are based on research from high-income countries, which may not reflect the genetic diversity seen in other parts of the world.
To help close this knowledge gap, researchers in Northeastern Brazil conducted one of the first detailed investigations into HER2-mutated NSCLC in Latin America. Their study, recently published in Volume 16 of Oncotarget, reveals a complex and often overlooked form of the disease, highlighting the need for broader access to targeted therapies in underserved populations.
Full blog - https://www.oncotarget.org/2025/10/08/new-insights-into-her2-mutated-non-small-cell-lung-cancer-in-brazil/
Paper DOI - https://doi.org/10.18632/oncotarget.28737
Correspondence to - Fabio Tavora - stellacpak@outlook.com
Abstract video - https://www.youtube.com/watch?v=hr5R9iDBFFI
Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28737
Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/
Keywords - cancer, HER2 mutation, NSCLC, lung cancer, targeted therapy, genomic profiling
To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us:
Facebook - https://www.facebook.com/Oncotarget/
X - https://twitter.com/oncotarget
Instagram - https://www.instagram.com/oncotargetjrnl/
YouTube - https://www.youtube.com/@OncotargetJournal
LinkedIn - https://www.linkedin.com/company/oncotarget
Pinterest - https://www.pinterest.com/oncotarget/
Reddit - https://www.reddit.com/user/Oncotarget/
Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh
MEDIA@IMPACTJOURNALS.COM
Oncotarget
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels.
However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance.
Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/
Paper DOI - https://doi.org/10.18632/oncotarget.28750
Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu
Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc
Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750
Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/
Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate
To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us:
Facebook - https://www.facebook.com/Oncotarget/
X - https://twitter.com/oncotarget
Instagram - https://www.instagram.com/oncotargetjrnl/
YouTube - https://www.youtube.com/@OncotargetJournal
LinkedIn - https://www.linkedin.com/company/oncotarget
Pinterest - https://www.pinterest.com/oncotarget/
Reddit - https://www.reddit.com/user/Oncotarget/
Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh
MEDIA@IMPACTJOURNALS.COM