Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Music
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/84/ef/0e/84ef0e89-af5f-476b-5046-ff3d99a35ac3/mza_4786384072714074999.jpg/600x600bb.jpg
Oncotarget
Oncotarget Podcast
500 episodes
2 days ago
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels. However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance. Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/ Paper DOI - https://doi.org/10.18632/oncotarget.28750 Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
RSS
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels. However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance. Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/ Paper DOI - https://doi.org/10.18632/oncotarget.28750 Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
https://i1.sndcdn.com/artworks-GNzmmyyHR80KlP8v-ceIyqw-t3000x3000.png
New Insights into HER2-Mutated Non-Small Cell Lung Cancer in Brazil
Oncotarget
5 minutes 1 second
1 month ago
New Insights into HER2-Mutated Non-Small Cell Lung Cancer in Brazil
Lung cancer remains one of the leading causes of cancer-related deaths worldwide. Although precision medicine has improved outcomes for many patients, certain rare genetic mutations are still poorly understood, particularly in regions with limited access to genomic testing. Such mutations involve the HER2 gene, better known for its role in breast cancer but also implicated in a small subset of lung cancers. HER2 mutations are found in approximately 2–4% of non-small cell lung cancer (NSCLC) cases and create unique challenges. These tumors can vary significantly in how they appear under a microscope and in how they respond to treatment. Adding to the complexity, most diagnostic and treatment guidelines are based on research from high-income countries, which may not reflect the genetic diversity seen in other parts of the world. To help close this knowledge gap, researchers in Northeastern Brazil conducted one of the first detailed investigations into HER2-mutated NSCLC in Latin America. Their study, recently published in Volume 16 of Oncotarget, reveals a complex and often overlooked form of the disease, highlighting the need for broader access to targeted therapies in underserved populations. Full blog - https://www.oncotarget.org/2025/10/08/new-insights-into-her2-mutated-non-small-cell-lung-cancer-in-brazil/ Paper DOI - https://doi.org/10.18632/oncotarget.28737 Correspondence to - Fabio Tavora - stellacpak@outlook.com Abstract video - https://www.youtube.com/watch?v=hr5R9iDBFFI Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28737 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, HER2 mutation, NSCLC, lung cancer, targeted therapy, genomic profiling To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Oncotarget
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels. However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance. Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/ Paper DOI - https://doi.org/10.18632/oncotarget.28750 Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM