Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/84/ef/0e/84ef0e89-af5f-476b-5046-ff3d99a35ac3/mza_4786384072714074999.jpg/600x600bb.jpg
Oncotarget
Oncotarget Podcast
500 episodes
1 day ago
BUFFALO, NY - November 10, 2025 – A new #research paper was #published in Oncotarget (Volume 16) on November 6, 2025, titled “Anti-DNA virus agent cidofovir - loaded green synthesized cerium oxide nanoparticles (Nanoceria): Nucleic acids (DNA and RNA) binding affinity and cytotoxicity effects.” In this study, led by Nahid Shahabadi from Razi University in Kermanshah, researchers developed an environmentally friendly approach to enhance the performance of cidofovir, a drug used to treat infections caused by DNA viruses. The work responds to the growing need for therapies that are safer, more effective, and better targeted. The research team developed a new compound by loading cidofovir onto green-synthesized cerium oxide nanoparticles (nanoceria), known as CDV-CeO2 NPs. This method combines the drug’s antiviral and anticancer properties with the biological activity of nanoceria, which is known for its antioxidant, anti-inflammatory, and tumor-targeting effects. To avoid toxic chemicals, the nanoparticles were synthesized using quince fruit peel extract, making the process more sustainable and suitable for medical applications. Laboratory experiments showed that the CDV-CeO2 nanoparticles were significantly more effective at killing breast cancer cells than either cidofovir or cerium oxide nanoparticles alone. At the highest tested concentration, the new compound destroyed more than 97% of cancer cells, compared to 72% with cidofovir alone and 50% with nanoparticles alone. These findings suggest that the combined formulation enhances anticancer activity and may allow for lower drug doses with fewer side effects. To understand how these nanoparticles interact with genetic material, the team studied their binding to DNA and RNA, two key molecules involved in cancer development and viral replication. CDV-CeO2 nanoparticles showed strong binding affinity through two mechanisms: groove binding, which fits into natural curves of the genetic molecule strands, and intercalation, which inserts between base pairs. The nanoparticles formed stable complexes that responded to temperature, indicating reliable interactions in biological systems. “The novelty of this work lies in the innovative green synthesis method, the dual-functional therapeutic application, and the enhanced biological activity of the CDV-CeO2 NPs, which collectively position these nanoparticles as promising candidates for future cancer and antiviral therapies.” This research presents a potential new strategy for improving drug targeting and delivery using green nanotechnology. The approach could lead to more effective treatments for diseases such as breast cancer and infections caused by human papillomavirus (HPV) and other DNA viruses. However, further research, including animal and clinical studies, is needed to confirm the safety and long-term effectiveness of this treatment. Overall, this study represents a significant step toward combining natural materials with nanomedicine to create more efficient therapies. If supported by future research, CDV-CeO2 nanoparticles could offer a new generation of dual-action treatments. DOI - https://doi.org/10.18632/oncotarget.28774 Correspondence to - Nahid Shahabadi - nahidshahabadi@yahoo.com Abstract video - https://www.youtube.com/watch?v=Il9CsfgO2mU Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us on social media: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
RSS
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
BUFFALO, NY - November 10, 2025 – A new #research paper was #published in Oncotarget (Volume 16) on November 6, 2025, titled “Anti-DNA virus agent cidofovir - loaded green synthesized cerium oxide nanoparticles (Nanoceria): Nucleic acids (DNA and RNA) binding affinity and cytotoxicity effects.” In this study, led by Nahid Shahabadi from Razi University in Kermanshah, researchers developed an environmentally friendly approach to enhance the performance of cidofovir, a drug used to treat infections caused by DNA viruses. The work responds to the growing need for therapies that are safer, more effective, and better targeted. The research team developed a new compound by loading cidofovir onto green-synthesized cerium oxide nanoparticles (nanoceria), known as CDV-CeO2 NPs. This method combines the drug’s antiviral and anticancer properties with the biological activity of nanoceria, which is known for its antioxidant, anti-inflammatory, and tumor-targeting effects. To avoid toxic chemicals, the nanoparticles were synthesized using quince fruit peel extract, making the process more sustainable and suitable for medical applications. Laboratory experiments showed that the CDV-CeO2 nanoparticles were significantly more effective at killing breast cancer cells than either cidofovir or cerium oxide nanoparticles alone. At the highest tested concentration, the new compound destroyed more than 97% of cancer cells, compared to 72% with cidofovir alone and 50% with nanoparticles alone. These findings suggest that the combined formulation enhances anticancer activity and may allow for lower drug doses with fewer side effects. To understand how these nanoparticles interact with genetic material, the team studied their binding to DNA and RNA, two key molecules involved in cancer development and viral replication. CDV-CeO2 nanoparticles showed strong binding affinity through two mechanisms: groove binding, which fits into natural curves of the genetic molecule strands, and intercalation, which inserts between base pairs. The nanoparticles formed stable complexes that responded to temperature, indicating reliable interactions in biological systems. “The novelty of this work lies in the innovative green synthesis method, the dual-functional therapeutic application, and the enhanced biological activity of the CDV-CeO2 NPs, which collectively position these nanoparticles as promising candidates for future cancer and antiviral therapies.” This research presents a potential new strategy for improving drug targeting and delivery using green nanotechnology. The approach could lead to more effective treatments for diseases such as breast cancer and infections caused by human papillomavirus (HPV) and other DNA viruses. However, further research, including animal and clinical studies, is needed to confirm the safety and long-term effectiveness of this treatment. Overall, this study represents a significant step toward combining natural materials with nanomedicine to create more efficient therapies. If supported by future research, CDV-CeO2 nanoparticles could offer a new generation of dual-action treatments. DOI - https://doi.org/10.18632/oncotarget.28774 Correspondence to - Nahid Shahabadi - nahidshahabadi@yahoo.com Abstract video - https://www.youtube.com/watch?v=Il9CsfgO2mU Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us on social media: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
https://i1.sndcdn.com/artworks-6dfj2M1pOi6gJtcr-jncIZA-t3000x3000.png
Engineered Bacterial Therapy Activates Immune Response in Cancer Preclinical Studies
Oncotarget
3 minutes 57 seconds
1 month ago
Engineered Bacterial Therapy Activates Immune Response in Cancer Preclinical Studies
BUFFALO, NY – October 8, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on October 6, 2025, titled “ACTM-838, a novel systemically delivered bacterial immunotherapy that enriches in solid tumors and delivers IL-15/IL-15Rα and STING payloads to engage innate and adaptive immunity in the TME and enable a durable anti-tumor immune response.” In this study, led by first author Kyle R. Cron and corresponding author Akshata R. Udyavar, researchers from Actym Therapeutics developed a new form of bacterial immunotherapy called ACTM-838. This treatment safely delivers immune-activating proteins directly to solid tumors. The approach may offer a new option for cancer patients whose solid tumors are resistant to current immunotherapies. Solid tumors often suppress the immune system, making it difficult for treatments like immune checkpoint inhibitors to work effectively. ACTM-838 was designed to overcome this challenge by targeting phagocytic immune cells within the tumor microenvironment (TME). Once inside the tumor, the therapy delivers two immune-stimulating components: IL-15/IL-15Rα and a modified version of STING. Both are known to activate the body’s innate and adaptive immune responses. This combination of immune-stimulating proteins helps shift the TME from immune-suppressive to immune-permissive, enabling the body’s natural defenses to fight the cancer. “STACT is a modular, genetically engineered live attenuated S. Typhimurium bacterial platform that enables tissue-specific localization and cell-targeted delivery of large, multiplexed payloads via systemic administration.” The study highlights how ACTM-838, built on a specially modified strain of Salmonella Typhimurium, safely targets tumors and avoids healthy tissue after intravenous injection. This targeted delivery reduces the risk of side effects while ensuring the immune-boosting agents reach their intended location. Importantly, ACTM-838 also showed significantly reduced inflammatory toxicity compared to its parent bacterial strain, which had previously presented challenges in clinical use. In preclinical tests, ACTM-838 shrank tumors and prevented their recurrence after treatment. Mice that were cured of tumors resisted re-injection with cancer cells, suggesting the development of long-lasting immune memory. The therapy also showed strong synergy with anti-PD1 drugs, a widely used class of cancer treatments, further improving outcomes in both treatment-resistant and responsive tumor models. Researchers also found that ACTM-838 changed the composition of immune cells within the tumor. It increased beneficial cells like cytotoxic T-cells and antigen-presenting macrophages, while reducing suppressive cell types such as regulatory T-cells and exhausted T-cells. These effects were confirmed through genetic analysis and cellular studies, pointing to a broad and coordinated immune response. This study offers proof-of-concept that live bacterial therapy can safely and effectively deliver gene-based immune modulators directly to tumors. With ACTM-838 now being tested in a Phase I clinical trial, the findings offer a new direction for cancer treatment strategies that activate the body’s own immune system, particularly in difficult-to-treat cases where other therapies fail. DOI - https://doi.org/10.18632/oncotarget.28769 Correspondence to - Akshata R. Udyavar - akshata.udyavar@pfizer.com Abstract video - https://www.youtube.com/watch?v=fr5OR3tvC_I Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Oncotarget
BUFFALO, NY - November 10, 2025 – A new #research paper was #published in Oncotarget (Volume 16) on November 6, 2025, titled “Anti-DNA virus agent cidofovir - loaded green synthesized cerium oxide nanoparticles (Nanoceria): Nucleic acids (DNA and RNA) binding affinity and cytotoxicity effects.” In this study, led by Nahid Shahabadi from Razi University in Kermanshah, researchers developed an environmentally friendly approach to enhance the performance of cidofovir, a drug used to treat infections caused by DNA viruses. The work responds to the growing need for therapies that are safer, more effective, and better targeted. The research team developed a new compound by loading cidofovir onto green-synthesized cerium oxide nanoparticles (nanoceria), known as CDV-CeO2 NPs. This method combines the drug’s antiviral and anticancer properties with the biological activity of nanoceria, which is known for its antioxidant, anti-inflammatory, and tumor-targeting effects. To avoid toxic chemicals, the nanoparticles were synthesized using quince fruit peel extract, making the process more sustainable and suitable for medical applications. Laboratory experiments showed that the CDV-CeO2 nanoparticles were significantly more effective at killing breast cancer cells than either cidofovir or cerium oxide nanoparticles alone. At the highest tested concentration, the new compound destroyed more than 97% of cancer cells, compared to 72% with cidofovir alone and 50% with nanoparticles alone. These findings suggest that the combined formulation enhances anticancer activity and may allow for lower drug doses with fewer side effects. To understand how these nanoparticles interact with genetic material, the team studied their binding to DNA and RNA, two key molecules involved in cancer development and viral replication. CDV-CeO2 nanoparticles showed strong binding affinity through two mechanisms: groove binding, which fits into natural curves of the genetic molecule strands, and intercalation, which inserts between base pairs. The nanoparticles formed stable complexes that responded to temperature, indicating reliable interactions in biological systems. “The novelty of this work lies in the innovative green synthesis method, the dual-functional therapeutic application, and the enhanced biological activity of the CDV-CeO2 NPs, which collectively position these nanoparticles as promising candidates for future cancer and antiviral therapies.” This research presents a potential new strategy for improving drug targeting and delivery using green nanotechnology. The approach could lead to more effective treatments for diseases such as breast cancer and infections caused by human papillomavirus (HPV) and other DNA viruses. However, further research, including animal and clinical studies, is needed to confirm the safety and long-term effectiveness of this treatment. Overall, this study represents a significant step toward combining natural materials with nanomedicine to create more efficient therapies. If supported by future research, CDV-CeO2 nanoparticles could offer a new generation of dual-action treatments. DOI - https://doi.org/10.18632/oncotarget.28774 Correspondence to - Nahid Shahabadi - nahidshahabadi@yahoo.com Abstract video - https://www.youtube.com/watch?v=Il9CsfgO2mU Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us on social media: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM