Nexus Voice is a comprehensive program that approaches the world from the perspective of a social observer, offering in-depth analysis of economics, culture, and career exploration. Through detailed interpretations of economic articles, decoding the societal metaphors embedded in contemporary songs, and sharing diverse workplace stories via professional interviews, the program aims to provide listeners with a multifaceted lens to understand the world and inspire personal growth.
Key Features:
Simplifying complex economic concepts by breaking down key points in articles.
Exploring emotions and social contexts behind songs, revealing deeper stories within the music.
Offering career insights and guidance to inspire professional exploration and life wisdom.
NexuStock, Connect the Future
Contact:
cylu.star@gmail.com
https://thepearl.ghost.io/
Powered by Firstory Hosting
Nexus Voice is a comprehensive program that approaches the world from the perspective of a social observer, offering in-depth analysis of economics, culture, and career exploration. Through detailed interpretations of economic articles, decoding the societal metaphors embedded in contemporary songs, and sharing diverse workplace stories via professional interviews, the program aims to provide listeners with a multifaceted lens to understand the world and inspire personal growth.
Key Features:
Simplifying complex economic concepts by breaking down key points in articles.
Exploring emotions and social contexts behind songs, revealing deeper stories within the music.
Offering career insights and guidance to inspire professional exploration and life wisdom.
NexuStock, Connect the Future
Contact:
cylu.star@gmail.com
https://thepearl.ghost.io/
Powered by Firstory Hosting
好的,這是一份根據您提供的 "Painting2Auction- Art Price Prediction with a Siamese CNN and LSTM.pdf" 文件所做的詳細摘要:
文件摘要:Painting2Auction: 使用 Siamese CNN 和 LSTM 的藝術品價格預測
簡介
這篇論文探討了藝術品拍賣前價格預測的重要性,並提出了一種使用深度學習來實現自動化預測的新方法。目前,藝術品價格預測主要依賴於經驗豐富的專家,但這些專家的時間有限。深度學習雖然潛力巨大,但在圖像到價格的預測方面尚未達到足夠的準確度。這篇論文的主要目標是開發一個能夠考慮市場因素,同時避免藝術家偏見的藝術品價格預測模型。
相關研究
論文回顧了以往的價格預測方法,並指出其不足之處:
數據集和特徵
論文使用了兩個數據集:
方法
模型架構包含兩個部分:
4.1 Siamese CNN
4.2 Model 1:使用 k-最近鄰算法進行價格預測
4.3 Model 2:使用 LSTM 進行價格預測
結果
5.1 基線模型
5.2 Siamese CNN 結果
5.3 價格預測
討論與未來工作
重要引述
結論
這篇論文成功地展示了使用 Siamese CNN 和 LSTM 進行藝術品價格預測的可行性,並取得比以往方法更優異的成果。此研究為藝術市場帶來了更透明、公平和自動化的潛力。