Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/fa/97/72/fa97720d-e7ee-aae5-fe05-76aaa0ac229f/mza_10668712826323414933.jpg/600x600bb.jpg
New Paradigm: AI Research Summaries
James Bentley
115 episodes
8 months ago
This podcast provides audio summaries of new Artificial Intelligence research papers. These summaries are AI generated, but every effort has been made by the creators of this podcast to ensure they are of the highest quality. As AI systems are prone to hallucinations, our recommendation is to always seek out the original source material. These summaries are only intended to provide an overview of the subjects, but hopefully convey useful insights to spark further interest in AI related matters.
Show more...
Technology
RSS
All content for New Paradigm: AI Research Summaries is the property of James Bentley and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
This podcast provides audio summaries of new Artificial Intelligence research papers. These summaries are AI generated, but every effort has been made by the creators of this podcast to ensure they are of the highest quality. As AI systems are prone to hallucinations, our recommendation is to always seek out the original source material. These summaries are only intended to provide an overview of the subjects, but hopefully convey useful insights to spark further interest in AI related matters.
Show more...
Technology
https://d3wo5wojvuv7l.cloudfront.net/t_rss_itunes_square_1400/images.spreaker.com/original/48de05c3796f9df23c66dbc9c716bed1.jpg
A Summary of 'Increased Compute Efficiency and the Diffusion of AI Capabilities'
New Paradigm: AI Research Summaries
11 minutes
8 months ago
A Summary of 'Increased Compute Efficiency and the Diffusion of AI Capabilities'
This episode analyzes the research paper titled "Increased Compute Efficiency and the Diffusion of AI Capabilities," authored by Konstantin Pilz, Lennart Heim, and Nicholas Brown from Georgetown University, the Centre for the Governance of AI, and RAND, published on February 13, 2024. It examines the rapid growth in computational resources used to train advanced artificial intelligence models and explores how improvements in hardware price performance and algorithmic efficiency have significantly reduced the costs of training these models.

Furthermore, the episode delves into the implications of these advancements for the broader dissemination of AI capabilities among various actors, including large compute investors, secondary organizations, and compute-limited entities such as startups and academic researchers. It discusses the resulting "access effect" and "performance effect," highlighting both the democratization of AI technology and the potential risks associated with the wider availability of powerful AI tools. The analysis also addresses the challenges of ensuring responsible AI development and the need for collaborative efforts to mitigate potential safety and security threats.

This podcast is created with the assistance of AI, the producers and editors take every effort to ensure each episode is of the highest quality and accuracy.

For more information on content and research relating to this episode please see: https://arxiv.org/pdf/2311.15377
New Paradigm: AI Research Summaries
This podcast provides audio summaries of new Artificial Intelligence research papers. These summaries are AI generated, but every effort has been made by the creators of this podcast to ensure they are of the highest quality. As AI systems are prone to hallucinations, our recommendation is to always seek out the original source material. These summaries are only intended to provide an overview of the subjects, but hopefully convey useful insights to spark further interest in AI related matters.