Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Music
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/38/5e/2e/385e2e1a-fd6d-cf4d-1acf-6a4f92248552/mza_1515038687252973743.jpg/600x600bb.jpg
Neural Search Talks — Zeta Alpha
Zeta Alpha
21 episodes
5 days ago
A monthly podcast where we discuss recent research and developments in the world of Neural Search, LLMs, RAG and Natural Language Processing with our co-hosts Jakub Zavrel (AI veteran and founder at Zeta Alpha) and Dinos Papakostas (AI Researcher at Zeta Alpha).
Show more...
Technology
RSS
All content for Neural Search Talks — Zeta Alpha is the property of Zeta Alpha and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
A monthly podcast where we discuss recent research and developments in the world of Neural Search, LLMs, RAG and Natural Language Processing with our co-hosts Jakub Zavrel (AI veteran and founder at Zeta Alpha) and Dinos Papakostas (AI Researcher at Zeta Alpha).
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/production/podcast_uploaded_nologo/19412145/19412145-1639386625357-d9ef19d323019.jpg
Generating Training Data with Large Language Models w/ Special Guest Marzieh Fadaee
Neural Search Talks — Zeta Alpha
1 hour 16 minutes 14 seconds
2 years ago
Generating Training Data with Large Language Models w/ Special Guest Marzieh Fadaee

Marzieh Fadaee — NLP Research Lead at Zeta Alpha — joins Andrew Yates and Sergi Castella to chat about her work in using large Language Models like GPT-3 to generate domain-specific training data for retrieval models with little-to-no human input. The two papers discussed are "InPars: Data Augmentation for Information Retrieval using Large Language Models" and "Promptagator: Few-shot Dense Retrieval From 8 Examples".

InPars: https://arxiv.org/abs/2202.05144

Promptagator: https://arxiv.org/abs/2209.11755


Timestamps:

00:00 Introduction

02:00 Background and journey of Marzieh Fadaee

03:10 Challenges of leveraging Large LMs in Information Retrieval

05:20 InPars, motivation and method

14:30 Vanilla vs GBQ prompting

24:40 Evaluation and Benchmark

26:30 Baselines

27:40 Main results and takeaways (Table 1, InPars)

35:40 Ablations: prompting, in-domain vs. MSMARCO input documents

40:40 Promptagator overview and main differences with InPars

48:40 Retriever training and filtering in Promptagator

54:37 Main Results (Table 2, Promptagator)

1:02:30 Ablations on consistency filtering (Figure 2, Promptagator)

1:07:39 Is this the magic black-box pipeline for neural retrieval on any documents

1:11:14 Limitations of using LMs for synthetic data

1:13:00 Future directions for this line of research


Neural Search Talks — Zeta Alpha
A monthly podcast where we discuss recent research and developments in the world of Neural Search, LLMs, RAG and Natural Language Processing with our co-hosts Jakub Zavrel (AI veteran and founder at Zeta Alpha) and Dinos Papakostas (AI Researcher at Zeta Alpha).