Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/85/83/c3/8583c308-ba92-864c-4c06-beae89e4ab6c/mza_9538994040864923453.jpg/600x600bb.jpg
Multi-messenger astrophysics
Astro-COLIBRI
62 episodes
4 days ago
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.
Show more...
Astronomy
Science
RSS
All content for Multi-messenger astrophysics is the property of Astro-COLIBRI and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.
Show more...
Astronomy
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/42166290/42166290-1757880468654-06bb4a5d2c3cc.jpg
Unmasking Cosmic Explosions with the Einstein Probe
Multi-messenger astrophysics
14 minutes 19 seconds
1 month ago
Unmasking Cosmic Explosions with the Einstein Probe

his episode dives into the groundbreaking discoveries of the Einstein Probe, a new soft X-ray mission revolutionizing our understanding of high-energy transients in the universe.


The Einstein Probe (EP), launched on January 9, 2024, has opened a new era of transient discovery in the previously largely unexplored soft X-ray band. It detects numerous fast X-ray transients, many of which surprisingly show no gamma-ray emission, making their connection to more common gamma-ray bursts (GRBs) a key mystery.


Recent research, detailed in the article "The redshift distribution of Einstein Probe transients supports their relation to gamma-ray bursts," has made a significant breakthrough. Using the Astro-COLIBRI archive of transient phenomena and analyzing the redshift distributions of both EP fast X-ray transients and long-duration gamma-ray bursts, scientists found **no statistically significant difference** between them. This strong empirical connection suggests that their redshifts are drawn from the same underlying distribution and that most extragalactic EP transients are **closely related to long GRBs**, originating from the deaths of massive stars (collapsars).


Further supporting this link is the agreement of EP transients with the "Amati relation," a known correlation between spectral peak energy and isotropic-equivalent energy for GRBs. Unlike long GRBs, EP transients are **clearly distinct from short-duration GRBs**, which originate from compact object mergers.


The Einstein Probe is effectively **uncovering a "missing population"** of "failed jets" and "dirty fireballs" that primarily emit at soft X-ray wavelengths. These include fascinating new discoveries such as relativistic shock breakout candidates and even a candidate relativistic jetted tidal disruption event. The volumetric rates of these EP transients are estimated to be comparable to or even exceed those of standard GRBs, suggesting that weak or failed jets might be intrinsically more common than successful ones.


This work highlights the crucial role of the Einstein Probe in expanding our knowledge of **massive star deaths and the mechanisms of jet formation**, revealing a parameter space of cosmic explosions previously hidden from gamma-ray-only detectors.


**Read the full article:**

O’Connor, B. et al. "The redshift distribution of Einstein Probe transients supports their relation to gamma-ray bursts." Draft version September 10, 2025.


Acknowledements: Podcast prepared with Google/NotebookLM. Illustration credits: ESA

Multi-messenger astrophysics
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.