
**GRB 250702B** is an **exceptional transient** that has puzzled astronomers, as it does not neatly fit into the expected populations of **ultra-long Gamma-Ray Bursts (GRBs)** or **relativistic Tidal Disruption Events (TDEs)**.
The event produced luminous gamma-ray radiation lasting **over 25 ks** (thousands of seconds), classifying it as an ultra-long GRB. However, unlike any previously known GRB, the Einstein Probe discovered a soft X-ray "precursor" activity up to **24 hours before the main gamma-ray triggers**.
Comprehensive X-ray observations using *Swift*, *NuSTAR*, and *Chandra* traced the transient’s afterglow between 0.5 and 65 days after the initial high-energy trigger. Key findings include:
* **Steep X-ray Decay:** The X-ray emission decayed steeply, measured at approximately $\sim t^{-1.9}$.
* **Sustained Engine Activity:** Observations showed short timescale X-ray variability (flares) in both *Swift* and *NuSTAR* data. This variability is difficult to explain via external shock emission and implies **sustained central engine activity lasting $\gtrsim 3$ days** in the observer frame.
* **Afterglow Modeling:** Multi-wavelength lightcurve modeling favors the standard fireball model, suggesting the jet propagated through a **wind-like external environment**.
* **Progenitor Debate:** While the event shares some properties with relativistic TDEs (such as the long-lived engine), many key characteristics, like its X-ray luminosity and short, seconds-long minimum variability timescale, are typical of standard GRBs (implying a stellar-mass black hole).
* **Hybrid Scenario Favored:** The authors argue that the properties are best explained by a **"hybrid" stellar-mass black hole progenitor** system, such as a micro-TDE or a helium star merger.
* **Unresolved Mystery:** The ultimate classification remains debated. Sensitive late-time X-ray monitoring is crucial to search for a **jet shutoff**, which would serve as a "smoking gun" for a TDE origin.
***
**Reference:**
O’Connor et al. (2025). **Comprehensive X-ray Observations of the Exceptional Ultra-long X-ray and Gamma-ray Transient GRB 250702B with Swift, NuSTAR, and Chandra: Insights from the X-ray Afterglow Properties.** Draft version September 30, 2025.
Acknowledements: Podcast prepared with Google/NotebookLM. Illustration credits: University of Bath