Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/85/83/c3/8583c308-ba92-864c-4c06-beae89e4ab6c/mza_9538994040864923453.jpg/600x600bb.jpg
Multi-messenger astrophysics
Astro-COLIBRI
62 episodes
3 days ago
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.
Show more...
Astronomy
Science
RSS
All content for Multi-messenger astrophysics is the property of Astro-COLIBRI and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.
Show more...
Astronomy
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/42166290/42166290-1758284431091-056db59f00a2d.jpg
Constraining Gamma-Ray Burst Parameters with the first Ultra-High Energy Neutrino Event KM3-230213A
Multi-messenger astrophysics
15 minutes 35 seconds
1 month ago
Constraining Gamma-Ray Burst Parameters with the first Ultra-High Energy Neutrino Event KM3-230213A

This week, we dive into the cosmic puzzle posed by ultra-high-energy (UHE) neutrinos. The conversation centers on the **KM3-230213A event**, detected by the KM3NeT/ARCA detector, which is the **highest-energy neutrino observed to date**, estimated at $220^{+570}_{-110}$ PeV. This detection marks the first observation of a presumed astrophysical neutrino in the UHE regime.


We explore the longstanding candidates for these UHE neutrinos: **Gamma-Ray Bursts (GRBs)**. GRBs are the most energetic transient events observed and are theorized to produce high-energy neutrinos when their powerful blastwaves interact with the surrounding matter and radiation fields.


The study uses the KM3-230213A event, combined with the non-detections from IceCube and Pierre Auger, to constrain the relevant model parameters of long-duration GRBs (lGRBs).


**Key Takeaways:**

  • Researchers investigated two primary models for GRB blastwaves: expanding in a constant density **Interstellar Medium (ISM)** or developing in a **wind-like environment (WIND)** with radially decreasing density.
  • The study derived constraints on **baryon loading** ($f_b$), which is the ratio of energy between protons and electrons.
  • For the **ISM model**, the baryon loading is constrained, for example, to $f_b \le 392$ at 90% confidence level if the interstellar medium particle density is $1 \text{ cm}^{-3}$. For $3 \text{ cm}^{-3}$, $f_b \le 131$.
  • For the **WIND model**, constraints on $f_b$ vary, such as $f_b \le 50$ at 90% confidence for a density parameter $A^* = 0.06$.
  • The results demonstrate that a large population of lGRBs evolving in blastwaves **can give rise to the diffuse UHE neutrino flux associated with KM3-230213A**. Furthermore, because GRBs are transient sources, they evade the strong constraints placed on steady neutrino sources (like blazars/AGN) by measurements of the diffuse gamma-ray sky.


**Reference to the Article:**

The findings discussed are based on the paper: **"Constraining gamma-ray burst parameters with the first ultra-high energy neutrino event KM3-230213A"** by The KM3NeT Collaboration. (Preprint reference: 2509.14895v1.pdf).


Acknowledements: Podcast prepared with Google/NotebookLM. Illustration credits: KM3NeT Collaboration

Multi-messenger astrophysics
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.