Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Music
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts49/v4/5f/4f/4d/5f4f4d9b-4da7-2736-ac34-ea432e834bc3/mza_5832746693385114202.jpg/600x600bb.jpg
MCMP
MCMP Team
66 episodes
9 months ago
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.
Show more...
Philosophy
RSS
All content for MCMP is the property of MCMP Team and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.
Show more...
Philosophy
https://cast.itunes.uni-muenchen.de/itunesu/icons/KongresseEvents_MCMP_blanco_300.jpg
Inductive Reasoning with Conceptual Spaces: A Proposal for Analogy
MCMP
22 minutes 12 seconds
7 years ago
Inductive Reasoning with Conceptual Spaces: A Proposal for Analogy
Marta Sznajder (University of Groningen/MCMP) gives a talk at the Workshop on Five Years MCMP: Quo Vadis, Mathematical Philosophy? (2-4 June, 2016) titled "Inductive Reasoning with Conceptual Spaces: A Proposal for Analogy". Abstract: In his late work on inductive logic Carnap introduced the conceptual level of representations – i.e. conceptual spaces – into his system. Traditional inductive logic (e.g. Carnap 1950) is a study of inductive reasoning that belongs to the symbolic level of cognitive representation (in the three-level view of representations presented by Gärdenfors (2000)). In the standard, symbolic approach the confirmation functions are functions applied to propositions defined with respect to a particular formal language. In my project I investigate alternative approach that is a step towards modelling inductive reasoning directly on the conceptual spaces: considering probability densities (or distributions) over the set of points in a conceptual space rather than traditional credences over propositions. I will present one way in which analogical effects can enter inductive reasoning, using the tools of Bayesian statistics and building up from Carnap’s idea that analogical dependencies between predicates can be read off conceptual spaces via the distances that encode similarity relations between predicates. I consider a quasi-hierarchical Bayesian model in which the different hypotheses considered by the agent are probability distributions over a one-dimensional conceptual space, representing possible distributions of the particular qualities among a studied population.
MCMP
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.