Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts4/v4/a0/a1/91/a0a19185-ab5a-523f-54f8-7a484cb17589/mza_973597465305625253.jpg/600x600bb.jpg
MCMP – Logic
MCMP Team
57 episodes
6 months ago
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.
Show more...
Philosophy
RSS
All content for MCMP – Logic is the property of MCMP Team and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.
Show more...
Philosophy
https://cast.itunes.uni-muenchen.de/itunesu/icons/KongresseEvents_MCMP_blanco_300.jpg
Attitudes in Epistemology: Belief vs. Credence
MCMP – Logic
1 hour 14 minutes 47 seconds
10 years ago
Attitudes in Epistemology: Belief vs. Credence
Julia Staffel (Washington University in St. Louis) gives a lecture (first session) at the Summer School on Mathematical Philosophy for Female Students (26 July - 1 Agusut, 2015) titled "Attitudes in Epistemology: Belief vs. Credence". Abstract: This lecture stream is intended to be an introduction to some central topics in formal epistemology. Formal epistemology is a relatively recent branch of epistemology, which uses formal tools such as logic and probability theory in order to answer questions about the nature of rational belief. An important feature that distinguishes formal epistemology from traditional epistemology is not just its use of formal tools, but also its understanding of the nature of belief. Traditional epistemology tends to focus almost exclusively on what is called ‘outright belief’, where the options considered are just belief, disbelief, or suspension of judgment. By contrast, it is widely accepted among formal epistemologists that this conception of belief is too coarse-grained to capture the rich nature of our doxastic attitudes. They posit that humans also have degrees of belief, or credences, which can take any value between full certainty that something is true, and certainty that it is false. The shift in focus towards degrees of belief has generated a rich research program, parts of which integrate with issues in traditional epistemology, and parts of which are specific to the debate about degrees of belief. Important questions in the field are for example: How are degrees of belief related to outright beliefs? What constraints are there on rational degrees of belief, and how can they be defended? How can we adequately represent degrees of belief in a formal framework? How do ideal epistemological norms bear on what non-ideal agents like us ought to believe? The results of these debates are relevant for many areas of philosophy besides epistemology, such as philosophy of mind, philosophy of language, and practical reasoning.
MCMP – Logic
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists. The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws. Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.