Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists.
The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws.
Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.
All content for MCMP – Epistemology is the property of MCMP Team and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists.
The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws.
Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.
Michael Weisberg (Pennsylvania) gives a talk at the Conference on Agent-Based Modeling in Philosophy (11-13 December, 2014) titled "Agent-based Models and Confirmation Theory". Abstract: Is it possible to develop a confirmation theory for agent-based models? The are good reasons to be skeptical: Classical confirmation theory explains how empirical evidence bears on the truth of hypotheses and theories, while agent-based models are almost always idealized and hence known to be false. Moreover, classical ideas about confirmation have been developed for relatively simple hypotheses, while even the simplest agent-based models have thousands of variables. Nevertheless, we can draw on ideas from confirmation theory in order to develop an account of agent-based model confirmation. Theorists can confirm hypotheses about model/world relations, and they can also use a variety of techniques to investigate the reliability of model results. This paper is an exploration of these possibilities.
MCMP – Epistemology
Mathematical Philosophy - the application of logical and mathematical methods in philosophy - is about to experience a tremendous boom in various areas of philosophy. At the new Munich Center for Mathematical Philosophy, which is funded mostly by the German Alexander von Humboldt Foundation, philosophical research will be carried out mathematically, that is, by means of methods that are very close to those used by the scientists.
The purpose of doing philosophy in this way is not to reduce philosophy to mathematics or to natural science in any sense; rather mathematics is applied in order to derive philosophical conclusions from philosophical assumptions, just as in physics mathematical methods are used to derive physical predictions from physical laws.
Nor is the idea of mathematical philosophy to dismiss any of the ancient questions of philosophy as irrelevant or senseless: although modern mathematical philosophy owes a lot to the heritage of the Vienna and Berlin Circles of Logical Empiricism, unlike the Logical Empiricists most mathematical philosophers today are driven by the same traditional questions about truth, knowledge, rationality, the nature of objects, morality, and the like, which were driving the classical philosophers, and no area of traditional philosophy is taken to be intrinsically misguided or confused anymore. It is just that some of the traditional questions of philosophy can be made much clearer and much more precise in logical-mathematical terms, for some of these questions answers can be given by means of mathematical proofs or models, and on this basis new and more concrete philosophical questions emerge. This may then lead to philosophical progress, and ultimately that is the goal of the Center.