Home
Categories
EXPLORE
True Crime
Comedy
Business
Society & Culture
History
Sports
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/cc/f8/5e/ccf85e68-a9fd-0e2a-4744-f90a8de3f636/mza_10513669359961335562.png/600x600bb.jpg
MCAT Basics (from MedSchoolCoach)
MedSchoolCoach
74 episodes
2 days ago
Join us as we detail MCAT exam topics. Each podcast covers several MCAT sections with lessons based on review material put out by the AAMC, such as practice tests and question banks. Sam also interviews MCAT tutors and experts who share tips on how premed students can raise their score to get into medical school.
Show more...
Science
RSS
All content for MCAT Basics (from MedSchoolCoach) is the property of MedSchoolCoach and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Join us as we detail MCAT exam topics. Each podcast covers several MCAT sections with lessons based on review material put out by the AAMC, such as practice tests and question banks. Sam also interviews MCAT tutors and experts who share tips on how premed students can raise their score to get into medical school.
Show more...
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/42995951/21dc0afe28994efa.png
Enzyme Kinetics, Inhibition, and Categorization
MCAT Basics (from MedSchoolCoach)
44 minutes 10 seconds
1 month ago
Enzyme Kinetics, Inhibition, and Categorization

In this episode, we explore enzyme kinetics and inhibition, key concepts for the MCAT Bio/Biochem section. We’ll cover how enzymes accelerate biological reactions by lowering activation energy and introduce two models for enzyme-substrate interaction: the lock-and-key model and the induced fit model.

You'll learn how to apply the Michaelis-Menten equation, focusing on factors like Km and Vmax to understand enzyme efficiency and substrate binding. We’ll also break down the different types of enzyme inhibition—competitive, non-competitive, and uncompetitive—and their effects on enzyme activity. Finally, we discuss the six major types of enzymes and their roles in biological processes, with examples like ligases, isomerases, and hydrolases.

Visit MedSchoolCoach.com for more help with the MCAT.

 

Jump into the conversation:

(00:00) Introduction to enzyme kinetics and inhibition

(01:58) Definition of enzymes and their role

(03:50) Enzyme models: lock and key vs. induced fit

(06:28) Michaelis-Menten Equation

(10:53) Association and dissociation constants

(12:34) Kcat and catalytic efficiency

(14:43) Assumptions of Michaelis-Menten

(18:23) Lineweaver-Burk Plot: linearized Michaelis-Menten Equation

(21:09) Enzyme inhibition: reversible vs. irreversible

(22:14) Competitive inhibition: Km and Vmax

(24:46) Non-competitive inhibition: Effects on Km and Vmax

(27:20) Irreversible inhibition

(29:13) Allosteric inhibition

(31:26) Homotropic and feedback inhibition

(37:40) Common biological enzymes: dehydrogenase, synthetase, and kinase

(43:44) MCAT Advice of the Day

MCAT Basics (from MedSchoolCoach)
Join us as we detail MCAT exam topics. Each podcast covers several MCAT sections with lessons based on review material put out by the AAMC, such as practice tests and question banks. Sam also interviews MCAT tutors and experts who share tips on how premed students can raise their score to get into medical school.